Information-Flow Security

for Interactive Programs

Kevin O’Neill, Michael Clarkson, Stephen Chong

Cornell University

Computer Security Foundations Workshop
July 6, 2006

Interactive, imperative programs

* Why interactive?
— Interactive programs: allow user input and
output at runtime.

— Programs whose security we care about are
invariably interactive.

* E.g., web servers, communication systems, etc.
* Why imperative?
— How most real systems are built:

e Traditional control-flow structures.
* Mature compilers and analyses.

Information-flow Security for Interactive Programs 2

Informal preview

* Take a straightforward sequential language:
—-skip | x:=e | 1f e then ¢, else c;
while e do c¢

* Assume programs can interact with channels,
which have high or low confidentiality levels.
* Add commands for interaction with channels:
—input x from 7
—output e to 7

* Goal: define semantic security conditions for
such a language.

Information-flow Security for Interactive Programs 3

Models of interactivity

* Two major models:
— Interactive state-based (trace-based) systems.
— Process algebras.

* We reuse some important ideas:
— Input and output as fundamental operations.
— Traces to encode runtime observations.
— Explicit modeling of agents.

Information-flow Security for Interactive Programs 4

Imperative meets interactive

* Imperative usually implies “batch-job”:
— “Inputs” are initial variable values.

— “Outputs” are final (& sometimes interim)
values.

— Security conditions seek to protect confidential
information stored in program variables.
* Interactive programs are more realistic.

— Want to capture dependencies between program
outputs and subsequent user input.

— Input/output operators are a useful abstraction.
* Don’t want to assume observable runtime memory.

Information-flow Security for Interactive Programs 5

Our contributions

e A semantic definition of noninterference
for interactive programs.

* Generalizations to deal with probability
and nondeterminism.

* Proof that VSI type system (with minor
modifications) soundly enforces our new
conditions.

Information-flow Security for Interactive Programs 6

Our system model

- H
ﬁ.— >— securesystem.com |L
s —

* Users interact with programs via channels.
— Input and output events occur on channels.
— Channels/users labeled H (high) or L (low).

* High users interact with high channel; low
users interact with low channel.

Information-flow Security for Interactive Programs 7

User interaction model

IR X

Information-flow Security for Interactive Programs 8

User interaction model

&

g

Low users can’t observe high inputs or outputs.

Information-flow Security for Interactive Programs 9

User interaction model

RS
@ . P LR

«— —>

High users can’t input on low channel.

Information-flow Security for Interactive Programs 10

User interaction model

v J
_ H L
@ op o
1 H P L
4

High users may observe low inputs and outputs directly.

Information-flow Security for Interactive Programs 11

Users and channels: assumptions

* Inputs are blocking.

* Users cannot directly observe values of
variables.

* Users observe only the sequence of events
occurring on the channels they observe.
— We ignore timing channels in this work.

* Users eventually supply inputs when
prompted.

— Our definitions still valid without this
assumption.

Information-flow Security for Interactive Programs 12

What is a secure system?

* Noninterference: low users must not be able
to infer anything about high behavior, given
low observations.

* In general, we assume that users may:

— Know text of programs.

— Be “logically omniscient.”

* Let’s look at some examples...

Information-flow Security for Interactive Programs 13

Insecure interactive programs

e A direct flow:
input x from H;
output x to L
* An implicit flow:
input x from H;
if (x=0) then
output 0 to L
else
output 1 to L

Information-flow Security for Interactive Programs 14

Secure interactive programs

* Programs with no high inputs are secure:

output x to L

¢ Care about high inputs, not contents of
memory.

¢ If programs run multiple times with same
memory, can:

— Require programs to “zero out” memory before
each execution.

— Model program sequence as a single program.

Information-flow Security for Interactive Programs 15

Secure interactive programs

* One-time pad encryption is secure:

while (true) do
x:=0 [0.5] x:=1;
input y from H;
output (x XOR y) to L

Information-flow Security for Interactive Programs 16

One-time pad 2.0

* What if we tell high users the one-time pad?

while (true) do
x:=0 [0.5] x:=1;
output x to H;
input y from H;
output (x XOR y) to L
* Is this program still secure?

— Note that low user still can’t infer value of y.

Information-flow Security for Interactive Programs

Why v2.0 isn’t secure

* Suppose a high user wants to transmit bit z:
while (true) do
x:=0 [0.5] x:=1;
output x to H;
input y from H;
output (x XOR y) to L

* High user can transmit value z directly.
— Even though value of y remains secret.

e Thus low users can learn about behavior of
high users.

Information-flow Security for Interactive Programs 18

User strategies

e How to formalize behavior in our model?

— In one-time pad v2.0, confidential user can
transmit arbitrary bit strings by selecting inputs
based on outputs already received.

— This suggests that we should protect the function
from inputs and outputs seen thus far to future
inputs.

* Following Wittbold and Johnson [1990] we
call this function a user strategy.

— Strategies are more general than inputs.

— Like processes, they describe user behavior.

Information-flow Security for Interactive Programs 19

Recap: what is a secure system?

* Noninterference: low users must not be able
to infer anything about high behavior, given
low observations.

* Summing up:

— “Behavior” = user strategy.

— “Observations” = sequence of input/output
events.

— “Infer” = determine that one strategy is more
likely than another, given observations seen and
knowledge of program text.

* Now, let’s get formal.

Information-flow Security for Interactive Programs 20

10

The interactive language

We reason about simple while-programs:

e ::=n | x| e, op e

c ::= skip | x:=e |
input x from 1 |
output e to 1t | ¢, ; C; |
1f e then ¢, else c;
while e do ¢ | ¢, [p] c,

Information-flow Security for Interactive Programs

* As a program executes, it modifies the
values of variables and produces events on

channels.

¢ Event notation:
— in(t,v): input of integer v on channel 7.
— out(t,v): output of integer v on channel .

* A trace is a finite sequence of events:

Example: t=<in(H,0), out(L,1), out(H,1) >

Information-flow Security for Interactive Programs 22

11

User strategies, more formally

* Formally, a user strategy for channel tis a
function from traces of events on 7 to inputs.
— Trace restriction: write ¢ | t to denote the
subsequence of t comprising events on t.

e Example:
<in(H,0), out(L,1), out(H,1) > | H=<in(H,0), out(H,1) >
eCallt | L a”“low trace” and ¢t [H a “high trace.”

— User strategies: functions from high/low traces to
integers.

* We assume strategies are deterministic.
— Probabilistic generalizations are straightforward.

Information-flow Security for Interactive Programs 23

Language semantics

* To model program execution we use:
— A command c.
— A state o:
* Maps from program variables to integer values.
— A trace t:
* Of events that have occurred thus far.
— A joint strategy o:
* Specifies a user strategy for each channel.
¢ A function from channel names 1 to user strategies.
* These give us configurations (c, o, t, ®).

— Which take steps, according to standard
operational rules (described in the paper).

Information-flow Security for Interactive Programs 24

12

Configurations emit traces

® Write m ~~ t to mean that configuration m
can produce (“emit”) trace ¢ as the program
executes.

e Example:

— ¢ =input x from H; output x to L
— o is some arbitrary state
— ¢ is the empty trace
— strategy o(H) is to input 1
* Then (¢, o, €, ®) emits two nonempty traces:
- <in(H,1) >
— <in(H,1), out(L,1) >

Information-flow Security for Interactive Programs 25

Formalizing noninterference

¢ Define observations with trace restriction:
-Ift [L=¢T]L, traces t and t" have the same
subsequence of low events.
e Start with a definition for deterministic
programs:

Command c satisfies noninterference if:
— Forallm=(c, 5,¢ w)and m"=(c, 5, &, ®") such that
o(L) = o’(L),
and for all traces t such that m ~ f,
there exists t"such thatt [L=¢"| L and m’ ~ t".

Information-flow Security for Interactive Programs 26

13

Probabilistic noninterference

* A configuration m gives us a probability
measure |, on execution sequences.
— Details in the paper.

* Let E (t) be the event that m emits a trace t’
suchthat t [L=¢t"[L.

Command c satisfies probabilistic
noninterference if:

— Forallm=(c, 5, ¢ w)and m"=(c, 5, ¢, ®") such that
o(L) = o’(L), and all traces ¢, we have

Hm (Em(t)) = Hm’ (E m’ (t))

Information-flow Security for Interactive Programs 27

One-time pad v2.0 is not secure

while (true) do
x:=0 [0.5] x:=1;
output x to H;
input y from H;
output (x XOR y) to L

Information-flow Security for Interactive Programs 28

One-time pad v2.0 is not secure

o(H): transmit 0

x:=0 [0.5] x:=1;
output x to H;

input y from H;
output (x XOR vy)

to L

o(H): transmit 1

Information-flow Security for Interactive Programs 29
One-time pad v2.0 is not secure
x:=0 [0.5] x:=1;
o(H): transmit 0 output x to H; o(H): transmit 1
input y from H;
output (x XOR y) to L
0.5 0.5 1 0.5 0.5
|
|
|
x=0 x=1 ! x=0 x=1
|
\ \ I
[0xor0=0 | [Oxor1=1 | | [Ixor0=1] [Ixorl1=0 |
v v ! v v
y=0 y=1 1 y=1 y=0
|
|
|
|
1
Information-flow Security for Interactive Programs 30

15

One-time pad v2.0 is not secure

x:=0 [0.5] x:=1;
o(H): transmit 0 output x to H; o(H): transmit 1
input y from H;

output (x XOR y) to L

v v

£ L=<out(L,0)> t[L=<out(L,0)>

v v

t | L=<out(L,1)> ¢]L=<out(L,1)>

0.5 0.5 1 0.5 0.5
|
|
|
x=0 x=1 : x=0 x=1
\ \ | /
[0xor0=0 | [Oxor1=1 | | [Ixor0=1] [Ixor1=0 |
|
|
y=0 y=1 1 y=1 y=0
|
|
|
|
1

Information-flow Security for Interactive Programs 31

What | didn’t tell you about

* We also handle nondeterministic choice.

— Like probabilistic choice, but no numbers.

* Models underspecified behavior like schedulers.

— Noninterference under refinement rules out
refinement attacks in programs with “compile-
time” nondeterminism.

* We prove a result that a variant of VSI type
system soundly enforces new conditions.

— Including probabilistic noninterference.

— More precise enforcement mechanisms should
apply without much extra work.

Information-flow Security for Interactive Programs 32

* We give novel semantic security conditions
for interactive, imperative programs.

* We extend definitions to nondeterministic
programs:
— With an explicit randomization command.
— With compile-time nondeterminism.

* We present a new soundness result

demonstrating feasibility of static
enforcement mechanisms for the definitions.

Information-flow Security for Interactive Programs 33

Some related work

* Semantic conditions for interactive systems
mostly limited to more abstract systems.

— Process algebras and related formalisms:

* Ryan & Schneider, Focardi & Gorrieri, Honda &
Yoshida, Pottier, Zdancewic & Myers...

¢ Preliminary work suggests our conditions equivalent to
(probabilistic) NDC, given reasonable assumptions.

— State-based and trace-based systems:

* Goguen & Meseguer, McLean, Gray & Syverson,
Mantel, Zakinthinos & Lee, Halpern & O’Neill...

® Our work synthesizes PL-based work with
strategy-based definitions of noninterference
for interactive systems.

Information-flow Security for Interactive Programs 34

17

Why not “bridge the gap”?

* Idea: translate imperative programs to interactive
setting, then reason about security:
— E.g.: Honda & Yoshida; Mantel & Sabelfeld; Focardi,
Rossi & Sabelfeld.
e This kind of work is valuable.

— Helpful to see connections between different threads of
research.

— Example: can use security checkers for process algebras
to verify security of imperative programs.
* But doesn’t solve all our problems.
— Current translations assume batch-job model.
— With our system model, no “bridging” is necessary.

Information-flow Security for Interactive Programs 35

e Concurrent interactive programs:

— Nondeterminism due to concurrency is tricky
to model and to reason about.

— Can extend ideas for batch-job programs.
* More powerful users/attackers.
— Low users who see time when events occur.
* More accurate enforcement mechanisms.
— E.g., relax assumption that high users always
provide input.
* Applications to real languages like Jif and
Flow Caml.

Information-flow Security for Interactive Programs 36

18

