
Anonymity and Information Hiding
in Multiagent Systems∗

Joseph Y. Halpern Kevin R. O’Neill
Department of Computer Science

Cornell University
{halpern, oneill}@cs.cornell.edu

May 17, 2004

Abstract

We provide a framework for reasoning about information-hiding require-
ments in multiagent systems and for reasoning about anonymity in particular.
Our framework employs the modal logic of knowledge within the context of
the runs and systems framework, much in the spirit of our earlier work on se-
crecy [Halpern and O’Neill 2002]. We give several definitions of anonymity
with respect to agents, actions, and observers in multiagent systems, and we
relate our definitions of anonymity to other definitions of information hid-
ing, such as secrecy. We also give probabilistic definitions of anonymity
that are able to quantify an observer’s uncertainty about the state of the sys-
tem. Finally, we relate our definitions of anonymity to other formalizations
of anonymity and information hiding, including definitions of anonymity in
the process algebra CSP and definitions of information hiding using function
views.

1 Introduction

The primary goal of this paper is to provide a formal framework for reasoning
about anonymity in multiagent systems. The importance of anonymity has in-

∗Authors were supported in part by NSF under grant CTC-0208535, by ONR under grants
N00014-00-1-03-41 and N00014-01-10-511, by the DoD Multidisciplinary University Research Ini-
tiative (MURI) program administered by the ONR under grant N00014-01-1-0795, and by AFOSR
under grant F49620-02-1-0101. Kevin O’Neill was also supported in part by a graduate fellowship
from the National Science and Engineering Research Council of Canada. A preliminary version of
this paper appeared at the 16th IEEE Computer Security Foundations Workshop in Pacific Grove,
California.

creased over the past few years as more communication passes over the Internet.
Web-browsing, message-sending, and file-sharing are all important examples of
activities that computer users would like to engage in, but may be reluctant to do
unless they can receive guarantees that their anonymity will be protected to some
reasonable degree. Systems are being built that attempt to implement anonymity
for various kinds of network communication (see, for example, [Goel, Robson,
Polte, and Sirer 2002; von Ahn, Bortz, and Hopper 2003; Levine and Shields 2002;
Reiter and Rubin 1998; Sherwood, Bhattacharjee, and Srinivasan 2002; Syverson,
Goldschlag, and Reed 1997]). It would be helpful to have a formal framework in
which to reason about the level of anonymity that such systems provide.

We view anonymity as an instance of a more general problem: information
hiding. In the theory of computer security, many of the fundamental problems and
much of the research has been concerned with the hiding of information. Cryp-
tography, for instance, is used to hide the contents of a message from untrusted
observers as it passes from one party to another. Anonymity requirements are in-
tended to ensure that the identity of the agent who performs some action remains
hidden from other observers. Noninterference requirements essentially say that
everythingabout classified or high-level users of a system should be hidden from
low-level users. Privacy is a catch-all term that means different things to different
people, but it typically involves hiding personal or private information from others.

Information-hiding properties such as these can be thought of as providing an-
swers to the following set of questions:

• What information needs to be hidden?

• Who does it need to be hidden from?

• How well does it need to be hidden?

By analyzing security properties with these questions in mind, it often becomes
clear how different properties relate to each other. These questions can also serve
as a test of a definition’s usefulness: an information-hiding property should be able
to provide clear answers to these three questions.

In an earlier paper [Halpern and O’Neill 2002], we formalized secrecy in terms
of knowledge. Our focus was on capturing what it means for one agent to have
total secrecy with respect to another, in the sense that no information flows from
the first agent to the second. Roughly speaking, a high-level user has total secrecy
if the low-level user never knows anything about the high-level user that he didn’t
initially know. Knowledge provides a natural way to express information-hiding
properties—information is hidden froma if a does not know about it. Not sur-
prisingly, our formalization of anonymity is similar in spirit to our formalization

2

of secrecy. Our definition of secrecy says that a classified agent maintains secrecy
with respect to an unclassified agent if the unclassified agent doesn’t learn any new
fact that depends only on the state of the classified agent. That is, if the agent
didn’t know a classified factϕ to start with, then the agent doesn’t know it at any
point in the system. Our definitions of anonymity say that an agent performing an
action maintains anonymity with respect to an observer if the observer never learns
certain facts having to do with whether or not the agent performed the action.

Obviously, total secrecy and anonymity are different. It is possible fori to have
complete secrecy while still not having very strong guarantees of anonymity, for
example, and it is possible to have anonymity without preserving secrecy. How-
ever, thinking carefully about the relationship between secrecy and anonymity sug-
gests new and interesting ways of thinking about anonymity. More generally, for-
malizing anonymity and information hiding in terms of knowledge is useful for
capturing the intuitions that practitioners have.

We are not the first to use knowledge and belief to formalize notions of in-
formation hiding. Glasgow, MacEwen, and Panangaden [1992] describe a logic
for reasoning about security that includes bothepistemicoperators (for reasoning
about knowledge) anddeonticoperators (for reasoning about permission and obli-
gation). They characterize some security policies in terms of the facts that an agent
is permitted to know. Intuitively, everything that an agent is not permitted to know
must remain hidden. Our approach is similar, except that we specify the formulas
that an agent isnot allowed to know, rather than the formulas she is permitted to
know. One advantage of accentuating the negative is that we do not need to use
deontic operators in our logic.

Epistemic logics have also been used to define information-hiding properties,
including noninterference and anonymity. Gray and Syverson [1998] use an epis-
temic logic to define probabilistic noninterference, and Syverson and Stubblebine
[1999] use one to formalize definitions of anonymity. The thrust of our paper is
quite different from these. Gray and Syverson focus on one particular definition
of information hiding in a probabilistic setting, while Syverson and Stubblebine
focus on describing an axiom system that is useful for reasoning about real-world
systems, and on how to reason about and compose parts of the system into adver-
saries and honest agents. Our focus, on the other hand, is on giving a semantic
characterization of anonymity in a framework that lends itself well to modeling
systems.

Shmatikov and Hughes [2004] position their approach to anonymity (which
is discussed in more detail in Section 5.3) as an attempt to provide an interface
between logic-based approaches, which they claim are good for specifying the
desired properties (like anonymity), and formalisms like CSP, which they claim
are good for specifying systems. We agree with their claim that logic-based ap-

3

proaches are good for specifying properties of systems, but also claim that, with an
appropriate semantics for the logic, there is no need to provide such an interface.
While there are many ways of specifying systems, many end up identifying a sys-
tem with a set of runs or traces, and can thus be embedded in the runs and systems
framework that we use.

Definitions of anonymity using epistemic logic arepossibilistic. Certainly, ifj
believes that any of 1000 users (includingi) could have performed the action thati
in fact performed, theni has some degree of anonymity with respect toj. However,
if j believes that the probability thati performed the action is .99, the possibilis-
tic assurance of anonymity provides little comfort. Most previous formalizations
of anonymity have not dealt with probability; they typically conclude with an ac-
knowledgment that it is important to do so, and suggest that their formalism can
indeed handle probability. One significant advantage of our formalism is that it is
completely straightforward to add probability in a natural way, using known tech-
niques [Halpern and Tuttle 1993]. As we show in Section 4, this lets us formalize
the (somewhat less formal) definitions of probabilistic anonymity given by Reiter
and Rubin [1998].

In this paper, we are more concerned with defining and specifying anonymity
properties than with describing systems for achieving anonymity or with verifying
anonymity properties. We want to define what anonymity means by using syntactic
statements that have a well-defined semantics. Our work is similar in spirit to pre-
vious papers that have given definitions of anonymity and other similar properties,
such as the proposal for terminology given by Pfitzmann and Köhntopp [2001] and
the information-theoretic definitions of anonymity given by Diaz, Seys, Claessens,
and Preneel [2002].

The rest of this paper is organized as follows. In Section 2 we briefly review
the runs and systems formalism of [Fagin, Halpern, Moses, and Vardi 1995] and
describe how it can be used to represent knowledge. In Section 3, we show how
anonymity can be defined using knowledge, and relate this definition to other no-
tions of information hiding, particularly secrecy (as defined in our earlier work). In
Section 4, we extend the possibilistic definition of Section 3 so that it can capture
probabilistic concerns. As others have observed [Hughes and Shmatikov 2004;
Reiter and Rubin 1998; Syverson and Stubblebine 1999], there are a number of
ways to define anonymity. Some definitions provide very strong guarantees of
anonymity, while others are easier to verify in practice. Rather than giving an ex-
haustive list of definitions, we focus on a few representative notions, and show by
example that our logic is expressive enough to capture many other notions of inter-
est. In Section 5, we compare our framework to that of three other attempts to for-
malize anonymity, by Schneider and Sidiropoulos [1996], Hughes and Shmatikov
[2004], and Stubblebine and Syverson [1999]. We conclude in Section 6.

4

2 Multiagent Systems: A Review

In this section, we briefly review the multiagent systems framework; we urge the
reader to consult [Fagin, Halpern, Moses, and Vardi 1995] for more details.

A multiagent systemconsists ofn agents, each of which is in somelocal state
at a given point in time. We assume that an agent’s local state encapsulates all the
information to which the agent has access. In the security setting, the local state
of an agent might include initial information regarding keys, the messages she has
sent and received, and perhaps the reading of a clock. The framework makes no
assumptions about the precise nature of the local state.

We can view the whole system as being in someglobal state, a tuple consisting
of the local state of each agent and the state of the environment. Thus, a global
state has the form(se, s1, . . . , sn), wherese is the state of the environment andsi

is agenti’s state, fori = 1, . . . , n.
A run is a function from time to global states. Intuitively, a run is a complete

description of what happens over time in one possible execution of the system. A
point is a pair(r,m) consisting of a runr and a timem. We make the standard
assumption that time ranges over the natural numbers. At a point(r,m), the system
is in some global stater(m). If r(m) = (se, s1, . . . , sn), then we takeri(m) to be
si, agenti’s local state at the point(r,m). Note that an agent’s local state at point
(r,m) doesnot necessarily encode all the agent’s previous local states. In some
systems, agents have perfect recall, in the sense that their local stateri(m) encodes
their states at times0, . . . ,m− 1, but this need not be generally true. (See [Fagin,
Halpern, Moses, and Vardi 1995, Chapter 4] for a formal definition and discussion
of perfect recall.) Formally, asystemconsists of a set of runs (or executions). Let
P(R) denote the points in a systemR.

The runs and systems framework is compatible with many other standard ap-
proaches for representing and reasoning about systems. For example, the runs
might be event traces generated by a CSP process (see Section 5.2), they might
be message-passing sequences generated by a security protocol, or they might be
generated from the strands in a strand space [Halpern and Pucella 2001; Thayer,
Herzog, and Guttman 1999]. The approach is rich enough to accommodate a vari-
ety of system representations.

Another important advantage of the framework is that it it is straightforward to
define formally what an agent knows at a point in a system. Given a systemR, let
Ki(r,m) be the set of points inP(R) thati thinks are possible at(r,m), i.e.,

Ki(r,m) = {(r′,m′) ∈ P(R) : r′i(m
′) = ri(m)}.

Agent i knows a factϕ at a point(r,m) if ϕ is true at all points inKi(r,m).
To make this intuition precise, we need to be able to assign truth values to basic

5

formulas in a system. We assume that we have a setΦ of primitive propositions,
which we can think of as describing basic facts about the system. In the context of
security protocols, these might be such facts as “the key isn” or “agentA sent the
messagem toB”. An interpreted systemI consists of a pair(R, π), whereR is a
system andπ is aninterpretation, which assigns to each primitive proposition inΦ
a truth value at each point. Thus, for everyp ∈ Φ and point(r,m) in R, we have
(π(r,m))(p) ∈ {true, false}.

We can now define what it means for a formulaϕ to be true at a point(r,m)
in an interpreted systemI, written(I, r,m) |= ϕ, by induction on the structure of
formulas:

• (I, r,m) |= p iff (π(r,m))(p) = true

• (I, r,m) |= ¬ϕ iff (I, r,m) 6|= ϕ

• (I, r,m) |= ϕ ∧ ψ iff (I, r,m) |= ϕ and(I, r,m) |= ψ

• (I, r,m) |= Kiϕ iff (I, r′,m′) |= ϕ for all (r′,m′) ∈ Ki(r,m)

As usual, we writeI |= ϕ if (I, r,m) |= ϕ for all points(r,m) in I.

3 Defining Anonymity Using Knowledge

3.1 Information-Hiding Definitions

Anonymity is one example of an information-hiding requirement. Other information-
hiding requirements include noninterference, privacy, confidentiality, secure message-
sending, and so on. These requirements are similar, and sometimes they overlap.
Noninterference, for example, requires a great deal to be hidden, and typically im-
plies privacy, anonymity, etc., for the classified user whose state is protected by the
noninterference requirement.

In an earlier paper [Halpern and O’Neill 2002], we looked at requirements of
total secrecyin multiagent systems. Total secrecy basically requires that in a sys-
tem with “classified” and “unclassified” users, the unclassified users should never
be able to infer the actions or the local states of the unclassified users. For secrecy,
the “what needs to be hidden” component of information-hiding is extremely re-
strictive: total secrecy requires that absolutely everything that a classified user does
must be hidden. The “how well does it need to be hidden” component depends on
the situation. Our definition of secrecy says that for anynontrivial fact ϕ (that
is, one that is not already valid) that depends only the state of the classified or
high-level agent, the formula¬Kjϕ must be valid. (See our earlier paper for more
discussion of this definition.) Semantically, this means that whatever the high-level

6

user does, there exists some run where the low-level user’s view of the system is
the same, but the high-level user did something different. Our nonprobabilistic def-
initions are fairly strong (simply because secrecy requires that so much be hidden).
The probabilistic definitions we gave require even more: not only can the agent not
learn any new classified fact, but he also cannot learn anything about the probabil-
ity of any such fact. (In other words, if an agent initially assigns a classified factϕ
a probabilityα of being true, he always assignsϕ that probability.) It would be per-
fectly natural, and possibly quite interesting, to consider definitions of secrecy that
do not require so much to be hidden (e.g., by allowing some classified information
to be declassified [Zdancewic and Myers 2001]), or to discuss definitions that do
not require such strong secrecy (e.g., by giving definitions that were stronger than
the nonprobabilistic definitions we gave, but not quite so strong as the probabilistic
definitions).

3.2 Defining Anonymity

The basic intuition behind anonymity is thatactionsshould be divorced from the
agentswho perform them, for some set ofobservers. With respect to the basic
information-hiding framework outlined above, the information that needs to be
hidden is the identity of the agent (or set of agents) who perform a particular action.
Who the information needs to be hidden from, i.e., which observers, depends on
the situation. The third component of information-hiding requirements—how well
information needs to be hidden—will often be the most interesting component of
the definitions of anonymity that we present here.

Throughout the paper, we use the formulaθ(i, a) to represent “agenti has
performed actiona, or will perform a in the future”.1 For future reference, let
δ(i, a) represent “agenti has performed actiona”. Note thatθ(i, a) is a fact about
the run: if it is true at some point in a run, it is true at all points in a run (since it is
true even ifi performsa at some point in the future). On the other hand,δ(i, a) may
be false at the start of a run, and then become true at the point wherei performsa.

It is not our goal in this paper to provide a “correct” definition of anonymity.
We also want to avoid giving an encyclopedia of definitions. Rather, we give some
basic definitions of anonymity to show how our framework can be used. We base
our choice of definitions in part on definitions presented in earlier papers, to make
clear how our work relates to previous work, and in part on which definitions of
anonymity we expect to be useful in practice. We first give an extremely weak def-

1If we want to consider systems that may crash we may want to considerθ′(i, a) instead, where
θ′(i, a) represents “agenti has performed actiona, or will performa in the future if the system does
not crash”. Since issues of failure are orthogonal to the anonymity issues that we focus on here, we
consider only the simpler definition in this paper.

7

inition, but one that nonetheless illustrates the basic intuition behind any definition
of anonymity.

Definition 3.1: Action a, performed by agenti, is minimally anonymouswith re-
spect to agentj in the interpreted systemI, if I |= ¬Kj [θ(i, a)].

This definition makes it clear what is being hidden (θ(i, a)—the fact thati
performsa) and from whom (j). It also describes how well the information is
hidden: it requires thatj not be sure thati actually performed, or will perform, the
action. Note that this is a weak information-hiding requirement. It might be the
case, for example, that agentj is certain that the action was performed either by
i, or by at most one or two other agents, thereby makingi a “prime suspect”. It
might also be the case thatj is able to place a very high probability oni performing
the action, even though he isn’t absolutely certain of it. (Agentj might know
that there is some slight probability that some other agenti′ performed the action,
for example.) Nonetheless, it should be the case that for any other definition of
anonymity we give, if we want to ensure thati’s performing actiona is to be kept
anonymous as far as observerj is concerned, theni’s action should be at least
minimally anonymous with respect toj.

Our definition ofa being minimally anonymous with respect toj is equivalent
to the apparently weaker requirementI |= θ(i, a) ⇒ ¬Kj [θ(i, a)], which says
that if actiona is performed byi, thenj does not not know it. Clearly ifj never
knows thata is performed byi, thenj will never know thata is performed byi if
i actually does performa. To see that the converse holds, it suffices to note that
if i does not performa, then surely¬Kj [θ(i, a)] holds. Thus, this definition, like
several that will follow, can be viewed as having the form “ifi performeda, thenj
does not know some appropriate fact”.

The definition of minimal anonymity also makes it clear how anonymity relates
to secrecy, as defined in our earlier work [Halpern and O’Neill 2002]. To explain
how, we first need to describe how we defined secrecy in terms of knowledge.
Given a systemI, say thatϕ is nontrivial in I if I 6|= ϕ, and thatϕ depends only
on the local state of agenti in I if I |= ϕ ⇒ Kiϕ. Intuitively, ϕ is nontrivial in
I if ϕ could be false inI, andϕ depends only oni’s local state ifi always knows
whether or notϕ is true. (It is easy to see thatϕ depends only on the local state ofi
if (I, r,m) |= ϕ andri(m) = r′i(m

′) implies that(I, r′,m′) |= ϕ.) According to
the definition in [Halpern and O’Neill 2002], agenti maintains total secrecy with
respect to another agentj in systemI if for every nontrivial factϕ that depends
only on the local state ofi, the formula¬Kjϕ is valid for the system. That is,i
maintains total secrecy with respect toj if j does not learn anything new about
agenti’s state. In general,θ(i, a) does not depend only oni’s local state, because

8

whetheri performsa may depend on whether or noti gets a certain message from
some other agenti′. On the other hand, if whether or noti performsa depends
only on i’s protocol, and the protocol is encoded ini’s local state, thenθ(i, a)
depends only oni’s local state. Ifθ(i, a) does depend only oni’s local state andj
did not know all along thati was going to perform actiona (i.e., if we assume that
θ(i, a) is nontrivial), then Definition 3.1 is clearly a special case of the definition
of secrecy. In any case, it is in much the same spirit as the definition of secrecy.
Essentially, anonymity says that the fact that agenti has or will perform actiona
must be hidden fromj, while total secrecy says that all facts that depend on agent
i must be hidden fromj.

Note that this definition of minimal anonymity is different from the one we
gave in the conference version of this paper [Halpern and O’Neill 2003]. There,
the definition given usedδ(i, a) rather thanθ(i, a). We say thata performed by
agenti is minimally δ-anonymous if Definition 3.1 holds, withθ(i, a) replaced
by δ(i, a). It is easy to see that minimal anonymity implies minimalδ-anonymity
(sinceδ(i, a) impliesθ(i, a)), but the converse is not true in general. For example,
suppose thatj gets a signal ifi is going to perform actiona (beforei actually
performs the action), but then never finds out exactly wheni performsa. Then
minimal anonymity does not hold. In runs wherei performsa, agentj knows that
i will perform a when he gets the signal. On the other hand, minimalδ-anonymity
does hold, becausej never knows wheni performsa. In this situation, minimal
anonymity seems to capture our intuitions of what anonymity should mean better
than minimalδ-anonymity does.

The next definition of anonymity we give is much stronger. It requires that if
some agenti performs an action anonymously with respect to another agentj, then
j must think it possible that the action could have been performed byany of the
agents (except forj). LetPjϕ be an abbreviation for¬Kj¬ϕ. The operatorPj is
the dual ofKj ; intuitively, Pjϕ means “agentj thinks thatϕ is possible”.

Definition 3.2: Action a, performed by agenti, is totally anonymouswith respect
to j in the interpreted systemI if

I |= θ(i, a) ⇒
∧
i′ 6=j

Pj [θ(i′, a)].

Definition 3.2 captures the notion that an action is anonymous if, as far as the
observer in question is concerned, it could have been performed by anybody in the
system.

Again, in the conference version of the paper, we defined total anonymity us-
ing δ(i, a) rather thanθ(i, a). (The same remark holds for all the other definitions

9

of anonymity that we give, although we do not always say so explicitly.) Let total
δ-anonymity be the anonymity requirement obtained whenθ(i, a) is replaced by
δ(i, a). It is not hard to show that if agents have perfect recall (which intuitively
means that their local state keeps track of all the actions they have performed—
see [Fagin, Halpern, Moses, and Vardi 1995] for the formal definition), then total
δ-anonymity implies total anonymity. This is not true, in general, without perfect
recall, because it might be possible for some agent to know thati will perform ac-
tion a—and therefore that no other agent will—but forget this fact by the time that
i actually performsa. Similarly, total anonymity does not imply totalδ-anonymity.
To see why, suppose that the agents are numbered1, . . . , n, and that an outside
observer knows that ifj performs actiona, thenj will perform it at timej. Then
total anonymity may hold even though totalδ-anonymity does not. For example,
at time 3, although the observer may consider it possible that agent 4 will perform
the action (at time 4), he cannot consider it possible that 4 has already performed
the action, as required by totalδ-anonymity.

Chaum [1988] showed that total anonymity could be obtained using DC-nets.
Recall that in a DC-net, a group ofn users use Chaum’s dining cryptographer’s
protocol (described in the same paper) to achieve anonymous communication. If
we model a DC-net as an interpreted multiagent systemI whose agents consist
exclusively of agents participating in a single DC-net, then if an agenti sends
a message using the DC-net protocol, that action is totally anonymous. (Chaum
proves this, under the assumption that any message could be generated by any user
in the system.) Note that in the dining cryptographer’s example, total anonymity
andδ-total anonymity agree, because who paid is decided before the protocol starts.

It is easy to show that if an action is totally anonymous, then it must be mini-
mally anonymous as well, as long as two simple requirements are satisfied. First,
there must be at least 3 agents in the system. (A college student with only one
roommate can’t leave out her dirty dishes anonymously, but a student with at least
two roommates might be able to.) Second, it must be the case thata can be per-
formed only once in a given run of the system. Otherwise, it might be possible for
j to think that any agenti′ 6= i could have performeda, but forj to knowthat agent
i did, indeed, performa. For example, consider a system with three agents besides
j. Agentj might know that all three of the other agents performed actiona. In that
case, in particular,j knows thati performeda, so actiona performed byi is not
minimally anonymous with respect toj, but is totally anonymous. We anticipate
that this assumption will typically be met in practice. It is certainly consistent with
examples of anonymity given in the literature. (See, for example, [Chaum 1988;
Schneider and Sidiropoulos 1996]). In any case, if it is not met, it is possible to tag
occurrences of an action (so that we can talk about thekth timea is performed).
Thus, we can talk about theith occurrence of an action being anonymous. Be-

10

cause theith occurrence of an action can only happen once in any given run, our
requirement is satisfied.

Proposition 3.3: Suppose that there are at least three agents in the interpreted
systemI and that

I |=
∧
i6=j

¬[θ(i, a) ∧ θ(j, a)].

If actiona, performed by agenti, is totally anonymous with respect toj, then it is
minimally anonymous as well.

Proof: Suppose that actiona is totally anonymous. Because there are three agents
in the system, there is some agenti′ other thani andj, and by total anonymity,I |=
θ(i, a) ⇒ Pj [θ(i′, a)]. If (I, r,m) |= ¬θ(i, a), clearly(I, r,m) |= ¬Kj [θ(i, a)].
Otherwise,(I, r,m) |= Pj [θ(i′, a)] by total anonymity. Thus, there exists a point
(r′,m′) such thatr′j(m

′) = rj(m) and(I, r′,m′) |= θ(i′, a). By our assumption,
(I, r′,m′) |= ¬θ(i, a), becausei 6= i′. Therefore,(I, r,m) |= ¬Kj [θ(i, a)]. It
follows thata is minimally anonymous with respect toj.

Definitions 3.1 and 3.2 are conceptually similar, even though the latter defini-
tion is much stronger. Once again, there is a set of formulas that an observer is
not allowed to know. With the earlier definition, there is only one formula in this
set:θ(i, a). As long asj doesn’t know thati performed actiona, this requirement
is satisfied. With total anonymity, there are more formulas thatj is not allowed
to know: they take the form¬θ(i′, a). Before, we could guarantee only thatj
did not know thati did the action; here, for many agentsi′, we guarantee thatj
does not know thati′ did not do the action. The definition is made slightly more
complicated by the implication, which restricts the conditions under whichj is not
allowed to know¬θ(i′, a). (If i didn’t actually perform the action, we don’t care
whatj thinks, since we are concerned only with anonymity with respect toi.) But
the basic idea is the same.

Note that total anonymity doesnot necessarily follow from total secrecy, be-
cause the formula¬θ(i′, a), for i′ 6= i, does not, in general, depend only on the
local state ofi. It is therefore perfectly consistent with the definition of total se-
crecy forj to learn this fact, in violation of total anonymity. (Secrecy, of course,
does not follow from anonymity, because secrecy requires that many more facts be
hidden than simply whetheri performed a given action.)

Total anonymity is a very strong requirement. Often, an action will not be
totally anonymous, but only anonymous up to some set of agents who could have
performed the action. This situation merits a weaker definition of anonymity. To be
more precise, letI be the set of all agents of the system and suppose that we have

11

some setIA ⊆ I—an “anonymity set”, using the terminology of Chaum [1988]
and Pfitzmann and K̈ohntopp [2001]—of agents who can perform some action.
We can define anonymity in terms of this set.

Definition 3.4: Action a, performed by agenti, is anonymous up toIA ⊆ I with
respect toj if

I |= θ(i, a) ⇒
∧

i′∈IA

Pj [θ(i′, a)].

In the anonymous message-passing system Herbivore [Goel, Robson, Polte,
and Sirer 2002], users are organized intocliquesC1, . . . , Cn, each of which uses
the dining cryptographers protocol [Chaum 1988] for anonymous message-transmission.
If a user wants to send an anonymous message, she can do so through her clique.
Herbivore claims that any useri is able to send a message anonymously up toCj ,
wherei ∈ Cj . As the size of a user’s clique varies, so does the strength of the
anonymity guarantees provided by the system.

In some situations, it is not necessary that there be a fixed anonymity set, as in
Definition 3.4. It suffices that, at all times, thereexistssome anonymity set with at
least, say,k agents. This leads to a definition ofk-anonymity.

Definition 3.5: Action a, performed by agenti, is k-anonymouswith respect toj
if

I |= θ(i, a) ⇒
∨

{IA:|IA|=k}

∧
i′∈IA

Pj [θ(i′, a)].

This definition says that at any pointj must think it possible that any of at
leastk agents might perform, or have performed, the action. Note that the set of
k agents might be different in different runs, making this condition strictly weaker
than anonymity up to a particular set of sizek.

A number of systems have been proposed that providek-anonymity for some
k. In the anonymous communications network protocol recently proposed by von
Ahn, Bortz, and Hopper [von Ahn, Bortz, and Hopper 2003], users can send mes-
sages with guarantees ofk-anonymity. In the systemP 5 (for “Peer-to-Peer Per-
sonal Privacy Protocol”) [Sherwood, Bhattacharjee, and Srinivasan 2002], users
join a logical broadcast tree that provides anonymous communication, and users
can choose what level ofk-anonymity they want, given thatk-anonymity for a
higher value ofk makes communication more inefficient. Herbivore [Goel, Rob-
son, Polte, and Sirer 2002] provides anonymity using cliques of DC-nets. If the

12

system guarantees that the cliques all have a size of at leastk, so that regardless of
clique composition, there are at leastk users capable of sending any anonymous
message, then Herbivore guaranteesk-anonymity.

3.3 A More Detailed Example: Dining Cryptographers

A well-known example of anonymity in the computer security literature is Chaum’s
“dining cryptographers problem” [Chaum 1988]. In the original description of this
problem, three cryptographers sit down to dinner and are informed by the host that
someone has already paid the bill anonymously. The cryptographers decide that
the bill was paid either by one of the three people in their group, or by an outside
agency such as the NSA. They want to find out which of these two situations is
the actual one while preserving the anonymity of the cryptographer who (might
have) paid. Chaum provides a protocol that the cryptographers can use to solve
this problem. To guarantee that it works, however, it would be nice to check that
anonymity conditions hold. Assuming we have a system that includes a set of three
cryptographer agentsC = {0, 1, 2}, as well as an outside observer agento, the
protocol should guarantee that for each agenti ∈ C, and each agentj ∈ C − {i},
the act of paying is anonymous up toC − {j} with respect toj. For an outside
observero, i.e., an agent other than one of three cryptographers, the protocol should
guarantee that for each agenti ∈ C, the protocol is anonymous up toC with respect
to o. This can be made precise using our definition of anonymity up to a set.

Because the requirements are symmetric for each of the three cryptographers,
we can describe the anonymity specification compactly by naming the agents us-
ing modular arithmetic. We use⊕ to denote addition mod 3. Let the interpreted
system(I = (R, π) represent the possible runs of one instance of the dining cryp-
tographers protocol, where the interpretationπ interprets formulas of the form
θ(i, “paid”) in the obvious way. The following knowledge-based requirements
comprise the anonymity portion of the protocol’s specification, for each agent
i ∈ C:

I |= θ(i, “paid”) ⇒ Pi⊕1θ(i⊕ 2, “paid”) ∧ Pi⊕2θ(i⊕ 1, “paid”)
∧ Poθ(i⊕ 1, “paid”) ∧ Poθ(i⊕ 2, “paid”).

This means that if a cryptographer paid, then each of the other cryptographers
must think it possible that the third cryptographer could have paid. In addition, an
outside observer must think it possible that either of the other two cryptographers
could have paid.

13

4 Probabilistic Variants of Anonymity

4.1 Probabilistic Anonymity

All of the definitions presented in Section 3 were nonprobabilistic. As we men-
tioned in the introduction, this is a serious problem for the “how well is informa-
tion hidden” component of the definitions. For all the definitions we gave, it was
necessary only that observers think itpossiblethat multiple agents could have per-
formed the anonymous action. However, an event that is possible may nonetheless
be extremely unlikely. Consider our definition of total anonymity (Definition 3.2).
It states that an action performed byi is totally anonymous if the observerj thinks
it could have been performed by any agent other thanj. This may seem like a
strong requirement, but if there are, say,102 agents, andj can determine thati per-
formed actiona with probability0.99 and that each of the other agents performed
actiona with probability0.0001, agenti might not be very happy with the guaran-
tees provided by total anonymity. Of course, the appropriate notion of anonymity
will depend on the application:i might be content to know that no agent canprove
that she performed the anonymous action. In that case, it might suffice for the
action to be only minimally anonymous. However, in many other cases, an agent
might want a more quantitative, probabilistic guarantee that it will be considered
reasonably likely that other agents could have performed the action.

Adding probability to the runs and systems framework is straightforward. The
approach we use goes back to [Halpern and Tuttle 1993], and was also used in our
work on secrecy [Halpern and O’Neill 2002], so we just briefly review the relevant
details here. Given a systemR, suppose we have a probability measureµ on the
runs ofR. The pair(R, µ) is aprobabilistic system. For simplicity, we assume that
every subset ofR is measurable. We are interested in the probability that an agent
assigns to an event at the point(r,m). For example, we may want to know that
at the point(r,m), observeri places a probability of0.6 on j’s having performed
some particular action. We want to condition the probabilityµ onKi(r,m), the
information thati has at the point(r,m). The problem is thatKi(r,m) is a set of
points, whileµ is a probability onruns. This problem is dealt with as follows.

Given a setU of points, letR(U) consist of the runs inR going through a
point inU . That is,

R(U) = {r ∈ R : (r,m) ∈ U for somem}.

The idea will be to conditionµ onR(Ki(r,m)) rather than onKi(r,m). To make
sure that conditioning is well defined, we assume thatµ(R(Ki(r,m))) > 0 for
each agenti, runr, and timem. That is,µ assigns positive probability to the set of

14

runs inR compatible with what happens in runr up to timem, as far as agenti is
concerned.

With this assumption, we can define a measureµr,m,i on the points inKi(r,m)
as follows. IfS ⊆ R, defineKi(r,m)(S) to be the set of points inKi(r,m) that
lie on runs inS; that is,

Ki(r,m)(S) = {(r′,m′) ∈ Ki(r,m) : r′ ∈ S}.

Let Fr,m,i, the measurable subsets ofKi(r,m) (that is, the sets to whichµr,m,i

assigns a probability), consist of all sets of the formKi(r,m)(S), whereS ⊆ R.
Then defineµr,m,i(Ki(r,m)(S)) = µ(S | R(Ki(r,m)). It is easy to check that
µr,m,i is a probability measure, essentially defined by conditioning.

Define aprobabilistic interpreted systemI to be a tuple(R, µ, π), where
(R, µ) is a probabilistic system. In a probabilistic interpreted system, we can give
semantics to syntactic statements of probability. Following [Fagin, Halpern, and
Megiddo 1990], we will be most interested in formulas of the formPri(ϕ) ≤ α
(or similar formulas with>, <, or = instead of≤). Intuitively, a formula such as
Pri(ϕ) ≤ α is true at a point(r,m) if, according toµr,m,i, the probability thatϕ
is true is at mostα. More formally,(I, r,m) |= Pri(ϕ) ≤ α if

µr,m,i({(r′,m′) ∈ Ki(r,m) : (I, r′,m′) |= ϕ}) ≤ α.

Similarly, we can give semantics toPri(ϕ) < α andPr(ϕ) = α, as well as con-
ditional formulas such asPr(ϕ |ψ) ≤ α. Note that although these formulas talk
about probability, they are either true or false at a given state.

It is straightforward to define probabilistic notions of anonymity in probabilis-
tic systems. We can think of Definition 3.1, for example, as saying thatj’s prob-
ability that i performs the anonymous actiona must be less than 1 (assuming that
every nonempty set has positive probability). This can be generalized by specifying
someα ≤ 1 and requiring that the probability ofθ(i, a) be less thanα.

Definition 4.1: Action a, performed by agenti, is α-anonymouswith respect to
agentj if I |= θ(i, a) ⇒ Prj [θ(i, a)] < α.

Note that if we replaceθ(i, a) by δ(i, a) in Definition 4.1, the resulting notion
might not be well defined. The problem is that the set

{(r′,m′) ∈ Ki(r,m) : (I, r′,m′) |= δ(i, a)}

may not be measurable; it may not have the formKi(r,m)(S) for someS ⊆ R.
The problem does not arise ifI is asynchronoussytem (in which casei knows that

15

time, and all the points inKi(r,m) are of the form(r′,m)), but it does arise ifI
is asynchronous. We avoid this technical problem by working withθ(i, a) rather
thanδ(i, a).

Definition 4.1, unlike Definition 3.1, includes an implication involvingθ(i, a).
It is easy to check that Definition 3.1 does not change when such an implication
is added; intuitively, ifθ(i, a) is false then¬Kj [θ(i, a)] is trivially true. Defini-
tion 4.1, however, would change if we removed the implication, because it might
be possible forj to have a high probability ofθ(i, a) even though it isn’t true. We
include the implication because without it, we place constraints on whatj thinks
aboutθ(i, a) even ifi has not performed the actiona and will not perform it in the
future. Such a requirement, while interesting, seems more akin to “unsuspectibil-
ity” than to anonymity.

Two of the notions of probabilistic anonymity considered by Reiter and Ru-
bin [1998] in the context of their Crowds system can be understood in terms of
α-anonymity. Reiter and Rubin say that a sender hasprobable innocenceif, from
an observer’s point of view, the sender “appears no more likely to be the originator
than to not be the originator”. This is simply 0.5-anonymity. (Under reasonable as-
sumptions, Crowds provides 0.5-anonymity for Web requests.) Similarly, a sender
haspossible innocenceif, from an observer’s point of view, “there is a nontriv-
ial probability that the real sender is someone else”. This corresponds to minimal
anonymity (as defined in Section 3.2), or toε-anonymity for some nontrivial value
of ε.

It might seem at first that Definition 4.1 should be the only definition of anonymity
we need: as long asj’s probability of i performing the action is low enough,i
should have nothing to worry about. However, with further thought, it is not hard
to see that this is not the case.

Consider a scenario where there are 1002 agents, and whereα = 0.11. Sup-
pose that the probability, according to Alice, that Bob performs the action is.1, but
that her probability that any of the other1000 agents performs the action is0.0009
(for each agent). Alice’s probability that Bob performs the action is small, but her
probability that anyone else performs it is more than three orders of magnitude
smaller. Bob is obviously the prime suspect.

This concern was addressed by Serjantov and Danezis [2002] in their paper on
information-theoretic definitions of anonymity. They consider the probability that
each agent in an anonymity set is the sender of some anonymous message, and
use entropy to quantify the amount of information that the system is leaking; Diaz
et al. [2002] and Danezis [2003] use similar techniques. In this paper we are not
concerned with quantitative measurements of anonymity, but we do agree that it
is worthwhile to consider stronger notions of anonymity than the nonprobabilistic
definitions, or evenα-anonymity, can provide. We hope to examine quantitative

16

definitions in future work.
The next definition strengthens Definition 4.1 in the way that Definition 3.2

strengthens Definition 3.1. It requires that no agent in the anonymity set be a more
likely suspect than any other.

Definition 4.2: Action a, performed by agenti, isstrongly probabilistically anony-
mous up toIA with respect to agentj if for eachi′ ∈ IA,

I |= θ(i, a) ⇒ Prj [θ(i, a)] = Prj [θ(i′, a)].

Depending on the size ofIA, this definition can be extremely strong. It does
not state simply that for all agents inIA, the observer must think it is reasonably
likely that the agent could have performed the action; it also says that the observer’s
probabilities must be the same for each such agent. Of course, we could weaken
the definition somewhat by not requiring that all the probabilities be equal, but
by instead requiring that they be approximately equal (i.e., that their difference be
small or that their ratio be close to 1). Reiter and Rubin [1998], for example, say
that the sender of a message isbeyond suspicionif she “appears no more likely to
be the originator of that message than any other potential sender in the system”. In
our terminology,i is beyond suspicion with respect toj if for eachi′ ∈ IA,

I |= θ(i, a) ⇒ Prj [θ(i, a)] ≤ Prj [θ(i′, a)].

This is clearly weaker than strong probabilistic anonymity, but still a very strong
requirement, and perhaps more reasonable, too. Our main point is that a wide
variety of properties can be expressed clearly and succinctly in our framework.

4.2 Conditional Anonymity

While we have shown that many useful notions of anonymity—including many
definitions that have already been proposed—can be expressed in our framework,
we claim that there are some important intuitions that have not yet been captured.
Suppose, for example, that someone makes a $5,000,000 donation to Cornell Uni-
versity. It is clearly not the case that everyone is equally likely, or even almost
equally likely, to have made the donation. Of course, we could take the anonymity
setIA to consist of those people who might be in a position to make such a large
donation, and insist that they all be considered equally likely. Unfortunately, even
that is unreasonable: a priori, some of them may already have known connections
to Cornell, and thus be considered far more likely to have made the donation. All

17

that an anonymous donor can reasonably expect is that nothing an observer learns
from his interactions with the environment (e.g., reading the newspapers, noting
when the donation was made, etc.) will give him more information about the iden-
tity of the donor than he already had.

For another example, consider a conference or research journal that provides
anonymous reviews to researchers who submit their papers for publication. It is
unlikely that the review process provides anything likeα-anonymity for a smallα,
or strongly probabilistic anonymity up to some reasonable set. When the prelim-
inary version of this paper, for example, was accepted by the Computer Security
Foundations Workshop, the acceptance notice included three reviews that were, in
our terminology, anonymous up to the program committee. That is, any one of the
reviews we received could have been written by any of the members of the program
committee. However, by reading some of the reviews, we were able to make fairly
good guesses as to which committee members had provided which reviews, based
on our knowledge of the specializations of the various members, and based on the
content of the reviews themselves. Moreover, we had a fairly good idea of which
committee members would provide reviews of our paper even before we received
the reviews. Thus, it seems unreasonable to hope that the review process would
provide strong probabilistic anonymity (up to the program committee), or even
some weaker variant of probabilistic anonymity. Probabilistic anonymity would
require the reviews to convert our prior beliefs, according to which some program
committee members were more likely than others to be reviewers of our paper, to
posterior beliefs according to which all program committee members were equally
likely! This does not seem at all reasonable. However, the reviewers might hope
that that the process did not give us any more information than we already had.

In our paper on secrecy [Halpern and O’Neill 2002], we tried to capture the
intuition that, when an unclassified user interacts with a secure system, she does
not learn anything about any classified user that she didn’t already know. We did
this formally by requiring that, for any three points(r,m), (r′,m′), and(r′′,m′′),

µ(r,m,j)(Ki(r′′,m′′)) = µ(r′,m′,j)(Ki(r′′,m′′)). (1)

That is, whatever the unclassified userj sees, her probability of any particular
classified state will remain unchanged.

When defining anonymity, we are not concerned with protecting all informa-
tion about some agenti, but rather the fact thati performs some particular action
a. Given a probabilistic systemI = (R, π, µ) and a formulaϕ, let er(ϕ) consist
of the set of runsr such thatϕ is true at some point inr, and letep(ϕ) be the set of
points whereϕ is true. That is

er(ϕ) = {r : ∃m((I, r,m) |= ϕ)},
ep(ϕ) = {(r,m) : (I, r,m) |= ϕ}.

18

The most obvious analogue to (1) is the requirement that, for all points(r,m) and
(r′,m′),

µ(r,m,j)(ep(θ(i, a))) = µ(r′,m′,j)(ep(θ(i, a))).

This definition says thatj never learns anything about the probability thati per-
formed performsa: she always ascribes the same probability to this event. In the
context of our anonymous donation example, this would say that the probability
(according toj) of i donating $5,000,000 to Cornell is the same at all times.

The problem with this definition is that it does not allowj to learn thatsome-
onedonated $5,000,000 to Cornell. That is, beforej learned that someone donated
$5,000,000 to Cornell,j may have thought it was unlikely that anyone would do-
nate that much money to Cornell. We cannot expect thatj’s probability of i do-
nating $5,000,000 would be the same both before and after learning that someone
made a donation. We want to give a definition of conditional anonymity that allows
observers to learn that an action has been performed, but that protects—as much as
possible, given the system—the fact that some particular agent performed performs
the action. If, on the other hand, the anonymous action has not been performed,
then the observer’s probabilities do not matter.

Suppose thati wants to perform actiona, and wants conditional anonymity
with respect toj. Let θ(, a) represent the fact thata has been performed by
some agent other thanj, i.e., θ(, a) = ∨i′ 6=jθ(i′, a). The definition of condi-
tional anonymity says thatj’s prior probability ofθ(i, a) givenθ(, a) must be the
same as his posterior probability ofθ(i, a) at points wherej knowsθ(, a), i.e., at
points wherej knows that someone other thanj has performed (or will perform)
a. Letα = µ(er(θ(i, a)) | er(θ(, a))). This is the prior probability thati has per-
formeda, given that somebody other thanj has. Conditional anonymity says that
at any point wherej knows that someone other thanj performsa, j’s probability
of θ(i, a) must beα. In other words,j shouldn’t be able to learn anything more
about who performsa (except that somebody does) than he know before he began
interacting with the system in the first place.

Definition 4.3: Action a, performed by agenti, is conditionally anonymouswith
respect toj in the probabilistic systemI if

I |= Kjθ(, a) ⇒ Prj(θ(i, a)) = µ(er(θ(i, a)) | er(θ(, a))).

Note that if only one agent ever performsa, thena is trivially conditionally anony-
mous with respect toj, but may not be minimally anonymous with respect toj.
Thus, conditional anonymity does not necessarily imply minimal anonymity.

19

In Definition 4.3, we implicitly assumed that agentj was allowed to learn that
someone other thanj performed actiona; anonymity is intended to hidewhich
agent performeda, given that somebody did. More generally, we believe that we
need to consider anonymity with respect to what an observer is allowed to learn.
We might want to specify, for example, that an observer is allowed to know that
a donation was made, and for how much, or to learn the contents of a conference
paper review. The following definition lets us do this formally.

Definition 4.4: Action a, performed by agenti, is conditionally anonymouswith
respect toj andϕ in the probabilistic systemI if

I |= Kjϕ⇒ Prj(θ(i, a)) = µ(er(θ(i, a)) | er(ϕ)).

Definition 4.3 is clearly the special case of Definition 4.4 whereϕ = θ(j, a).
Intuitively, both of these definitions say that once an observer learns some factϕ
connected to the factθ(i, a), we require that she doesn’t learn anything else that
might change her probabilities ofθ(i, a).

4.3 Example: Probabilistic Dining Cryptographers

Returning the dining cryptographers problem, suppose that it is well-known that
one of the three cryptographers at the table is much more generous than the other
two, and therefore more likely to pay for dinner. Suppose, for example, that the
probability measure on the set of runs where the generous cryptographer has paid
is 0.8, given that one of the cryptographers paid for dinner, and that it is 0.1 for
each of the other two cryptographers. Conditional anonymity for each of the three
cryptographers with respect to an outside observer means that when such observer
learns that one of the cryptographers has paid for dinner, his probability that any
of the three cryptographers paid should remain 0.8, 0.1, and 0.1. If the one of the
thrifty cryptographers paid, the generous cryptographer should think that there is
a probability of0.5 = 0.1/(0.1 + 0.1) that either of the others paid. Likewise,
if the generous cryptographer paid, each of the others should think that there is a
probability of0.8/(0.8+0.1) that the generous cryptographer paid and a probabil-
ity of 0.1/(0.8 + 0.1) that the other thrifty cryptographer paid. We can similarly
calculate all the other relevant probabilities.

More generally, suppose that we have an intepreted probabilistic system(R, µ, π)
that represents instances of the dining cryptographers protocol, where the interpre-
tation π once again interprets formulas of the formθ(i, “paid”) andθ(, “paid”)
in the obvious way, and where the formulaγ is true if one of the cryptographers

20

paid. (That is,γ is equivalent to
∨

i∈{0,1,2} θ(i, “paid”).) For any cryptographer
i ∈ {0, 1, 2}, letα(i) be the prior probability thati paid, given that somebody else
did. That is, let

α(i) = µ(er(θ(i, “paid”)) | er(γ)).

In the more concrete example given above, if0 is the generous cryptographer, we
would haveα(0) = 0.8 andα(1) = α(2) = 0.1.

For the purposes of conditional probability with respect to an agentj, we are
interested in the probability that some agenti paid, given that somebody other than
j paid. Formally, fori 6= j, let

α(i, j) = µ(er(θ(i, “paid”)) | er(θ(, “paid”))).

If an observero is not one of the three cryptographers, thano didn’t pay, and we
haveα(i, o) = α(i). Otherwise, ifi, j ∈ {0, 1, 2}, we can use conditioning to
computeα(i, j):

α(i, j) =
α(i)

α(j ⊕ 1) + α(j ⊕ 2)
.

(Once again, we make our definitions and requirements more compact by using
modular arithmetic, where⊕ denotes addition mod 3.)

The following formula captures the requirement of conditional anonymity in
the dining cryptographer’s protocol, for each cryptographeri, with respect to the
other cryptographers and any outside observers.

I |=
[
Ki⊕1θ(i⊕ 1, “paid”) ⇒ Pri⊕1(θ(i, “paid”)) = α(i, i⊕ 1)

]
∧[

Ki⊕2θ(i⊕ 2, “paid”) ⇒ Pri⊕2(θ(i, “paid”)) = α(i, i⊕ 2)
]
∧

[Koθ(o, “paid”) ⇒ Pro(θ(i, “paid”)) = α(i, o)] .

Chaum’s original proof that the dining cryptographers protocol provides anonymity
actually proves conditional anonymity in this general setting. Note that if the prob-
ability that one of the cryptographers will pay is 1, that cryptographer will have
conditional anonymity even though he doesn’t even have minimal anonymity.

4.4 Other Uses for Probability

In the previous two subsections, we have emphasized how probability can be used
to obtain definitions of anonymity stronger than those presented in Section 3. How-
ever, probabilistic systems can also be used to define interesting ways of weakening
those definitions. Real-world anonymity systems do not offer absolute guarantees
of anonymity such as those those specified by our definitions. Rather, they guaran-
tee that a user’s anonymity will be protectedwith high probability. In a given run,

21

a user’s anonymity might be protected or corrupted. If the probability of the event
that a user’s anonymity is corrupted is very small, i.e., the set of runs where her
anonymity is not protected is assigned a very small probability by the measureµ,
this might be enough of a guarantee for the user to interact with the system.

Recall that we said thati maintains total anonymity with respect toj if the
fact ϕ = θ(i, a) ⇒

∧
i′ 6=j Pj [θ(i′, a)] is true at every point in the system. Total

anonymity is compromised in a runr if at some point(r,m), ¬ϕ holds. Therefore,
the set of runs where total anonymity is compromised is simplyer(¬ϕ), using the
notation of the previous section. Ifµ(er(¬ϕ)) is very small, theni maintains total
anonymity with very high probability. This analysis can obviously be extended to
all the other definitions of anonymity given in previous sections.

Bounds such as these are useful for analyzing real-world systems. The Crowds
system [Reiter and Rubin 1998], for example, uses randomization when routing
communication traffic, so that anonymity is protected with high probability. The
probabilistic guarantees provided by Crowds were analyzed formally by Shmatikov
[2002], using a probabilistic model checker, and he demonstrates how the anonymity
guarantees provided by the Crowds system change as more users (who may be ei-
ther honest or corrupt) are added to the system. Shmatikov uses a temporal proba-
bilistic logic to express probabilistic anonymity properties, so these properties can
be expressed in our system framework. (It is straightforward to give semantics to
temporal operators in systems; see [Fagin, Halpern, Moses, and Vardi 1995].) In
any case, Shmatikov’s analysis of a real-world anonymity system is a useful exam-
ple of how the formal methods that we advocate can be used to specify and verify
properties of real-world systems.

5 Related Work

5.1 Knowledge-based Definitions of Anonymity

As mentioned in the introduction, we are not the first to use knowledge to han-
dle definitions of security, information hiding, or even anonymity. Anonymity has
been formalized using epistemic logic by Syverson and Stubblebine [1999]. Like
us, they use epistemic logic to characterize a number of information-hiding require-
ments that involve anonymity. However, the focus of their work is very different
from ours. They describe a logic for reasoning about anonymity and a number of
axioms for the logic. An agent’s knowledge is based, roughly speaking, on his
recent actions and observations, as well as what follows from his log of system
events. The first five axioms that Syverson and Stubblebine give are the standard
S5axioms for knowledge. There are well-known soundness and completeness re-
sults relating theS5 axiom system to Kripke structure semantics for knowledge

22

[Fagin, Halpern, Moses, and Vardi 1995]. However, they give many more axioms,
and they do not attempt to give a semantics for which their axioms are sound. Our
focus, on the other hand, is completely semantic. We have not tried to axiomatize
anonymity. Rather, we try to give an appropriate semantic framework in which to
consider anonymity.

In some ways, Syverson and Stubblebine’s model is more detailed than the
model used here. Their logic includes many formulas that represent various actions
and facts, including the sending and receiving of messages, details of encryption
and keys, and so on. They also make more assumptions about the local state of
a given agent, including details about the sequence of actions that the agent has
performed locally, a log of system events that have been recorded, and a set of
facts of which the agent is aware. While these extra details may accurately reflect
the nature of agents in real-world systems, they are orthogonal to our concerns
here. In any case, it would be easy to add such expressiveness to our model as
well, simply by including these details in the local states of the various agents.

It is straightforward to relate our definitions to those of Syverson and Stub-
blebine. They consider facts of the formϕ(i), wherei is a principal, i.e., an agent.
They assume that the factϕ(i) is a single formula in which a single agent name
occurs. Clearly,θ(i, a) is an example of such a formula. In fact, Syverson and
Stubblebine assume that ifϕ(i) andϕ(j) are both true, theni = j. For theθ(i, a)
formulas, this means thatθ(i, a) and θ(i′, a) cannot be simultaneously true: at
most one agent can perform an action in a given run, exactly as in the setup of
Proposition 3.3.

There is one definition in [Syverson and Stubblebine 1999] that is especially
relevant to our discussion; the other relevant definitions presented there are similar.
A system is said to satisfy(≥ k)-anonymityif the following formula is valid for
some observero:

ϕ(i) ⇒ Po(ϕ(i)) ∧ Po(ϕ(i1)) ∧ · · · ∧ Po(ϕ(ik−1)).

This definition says that ifϕ(i) holds, there must be at leastk agents, includingi,
that the observer suspects. (The existential quantification of the agentsi1, . . . , in−1

is implicit.) The definition is essentially equivalent to our definition of(k − 1)-
anonymity. It certainly implies that there arek − 1 agents other thani for which
ϕ(i′) might be true. On the other hand, ifPo(ϕ(i′)) is true fork − 1 agents other
thani, then the formula must hold, becauseϕ(i) ⇒ Po(ϕ(i)) is valid.

5.2 CSP and Anonymity

A great deal of work on the foundations of computer security has used process
algebras such as CCS and CSP [Milner 1980; Hoare 1985] as the basic system

23

framework [Focardi and Gorrieri 2001; Schneider 1996]. Process algebras offer
several advantages: they are simple, they can be used for specifying systems as
well as system properties, and model-checkers are available that can be used to
verify properties of systems described using their formalisms.

Schneider and Sidiropoulos [1996] use CSP both to characterize one type of
anonymity and to describe variants of the dining cryptographers problem [Chaum
1988]. They then use a model-checker to verify that their notion of anonymity
holds for those variants of the problem. To describe their approach, we need to
outline some of the basic notation and semantics of CSP. To save space, we give
a simplified treatment of CSP here. (See Hoare [1985] for a complete description
of CSP.) The basic unit of CSP is theevent. Systems are modeled in terms of
the events that they can perform. Events may be built up several components.
For example, “donate.$5” might represent a “donate” event in the amount of $5.
Processesare the systems, or components of systems, that are described using CSP.
As a process unfolds or executes, various events occur. For our purposes, we make
the simplifying assumption that a process is determined by the event sequences it
is able to engage in.

We can associate with every process a set oftraces. Intuitively, each trace in
the set associated with processP represents one sequence of events that might
occur during an execution ofP . Informally, CSP event traces correspond to finite
prefixes of runs, except that they do not explicitly describe the local states of agents
and do not explicitly describe time.

Schneider and Sidiropoulos define a notion of anonymity with respect to a set
A of events. Typically,A consists of events of the formi.a for a fixed actiona,
wherei is an agent in some set that we denoteIA. Intuively, anonymity with respect
toA means that if any event inA occurs, it could equally well have been any other
event inA. In particular, this means that if an agent inIA performsa, it could
equally well have been any other agent inIA. Formally, given a setΣ of possible
events andA ⊆ Σ, let fA be a function on traces that, given a traceτ , returns a
tracefA(τ) that is identical toτ except that every event inA is replaced by a fixed
eventα /∈ Σ. A processP is strongly anonymousonA if f−1

A (fA(P)) = P , where
we identifyP with its associated set of traces. This means that all the events inA
are interchangeable; by replacing any event inA with any other we would still get
a valid trace ofP .

Schneider and Sidiropoulos give several very simple examples that are useful
for clarifying this definition of anonymity. One is a system where there are two
agents who can provide donations to a charity, but where only one of them will ac-
tually do so. Agent0, if she gives a donation, gives $5, and agent1 gives $10. This
is followed by a “thanks” from the charity. The events of interest are “0.gives” and
“1.gives” (representing events where0 and1 make a donation), “$5” and “$10”

24

(representing the charity’s receipt of the donation), “thanks”, and “STOP” (to sig-
nify that the process has ended). There are two possible traces:

1. 0.gives→ $5→ “thanks”→ STOP.

2. 1.gives→ $10→ “thanks”→ STOP.

The donors require anonymity, and so we require that the CSP process is strongly
anonymous on the set{0.gives, 1.gives}. In fact, this condition is not satisfied
by the process, because “0.gives” and “1.gives” are not interchangeable. This is
because “0.gives” must be followed by “$5”, while “1.gives” must be followed by
“$10”. Intuitively, an agent who observes the traces can determine the donor by
looking at the amount of money donated.

We believe that Schneider and Sidiropoulos’s definition is best understood as
trying to capture the intuition that an observer who sees all the events generated
by P , except for events inA, does not know which event inA occurred. We can
make this precise by translating Schneider and Sidiropoulos’s definition into our
framework. The first step is to associate with each processP a corresponding set
of runsRP . We present one reasonable way of doing so here, which suffices for
our purposes. In future work, we hope to explore the connection between CSP and
the runs and systems framework in more detail.

Recall that a run is an infinite sequence of global states of the form(se, s1, . . . , sn),
where eachsi is the local state of agenti, andse is the state of the environment.
Therefore, to specify a set of runs, we need to describe the set of agents, and then
explain how to derive the local states of each agent for each run. There is an obvi-
ous problem here: CSP has no analogue of agents and local states. To get around
this, we could simply tag all events with an agent (as Schneider and Sidiropoulos
in fact do for the events inA). However, for our current purposes, a much simpler
approach will do. The only agent we care about is a (possibly mythical) observer
who is able to observe every event except the ones inA. Moreover, for events in
A, the observer knows that something happened (although not what). There may
be other agents in the system, but their local states are irrelevant. We formalize this
as follows.

Fix a processP over some setΣ of events, and letA ⊆ Σ. Following Schneider
and Sidiropoulos, for the purposes of this discussion, assume thatA consists of
events of the formi.a, wherei ∈ IA anda is some specific action. We say that a
systemR is compatible withP if there exists some agento such that the following
two conditions hold:

• for every runr ∈ R and every timem, there exists a traceτ ∈ P such that
τ = re(m) andfA(τ) = ro(m);

25

• for every traceτ ∈ P , there exists a runr ∈ R such thatre(|τ |) = τ and
ro(|τ |) = fA(τ) (where|τ | is the number of events inτ).

Intuitively,R representsP if (1) for every traceτ in P , there is a point(r,m) inR
such that, at this point, exactly the events inτ have occurred (and are recorded in
the environment’s state) ando has observedfA(τ), and (2) for every point(r,m)
in R, there is a traceτ in P such that precisely the events inre(m) have happened
in τ , ando has observedfA(τ) at (r,m). We say that the interpreted systemI =
(R, π) is compatible withP if R is compatible withP and if (I, r,m) |= θ(i, a)
whenever the eventi.a is in the event sequencere(m′) for somem′.

We are now able to make a formal connection between our definition of anonymity
and that of Schneider and Sidiropoulos. As in the setup of Proposition 3.3, we as-
sume that an anonymous actiona can be performed only once in a given run.

Theorem 5.1: If I = (R, π) is compatible withP , thenP is strongly anonymous
on the alphabetA if and only if for every agenti ∈ IA, the actiona performed by
i is anonymous up toIA with respect too in I.

Proof: Suppose thatP is strongly anonymous on the alphabetA and thati ∈ IA.
Given a point(r,m), suppose that(I, r,m) |= θ(i, a), so that the eventi.a appears
in re(n) for somen ≥ m. We must show that(I, r,m) |= Po[θ(i′, a)] for every
i′ ∈ IA, that is, thata is anonymous up toIA with respect too. For anyi′ ∈ IA,
this requires showing that there exists a point(r′,m′) such thatro(m) = r′o(m

′),
andr′o(n

′) includesi′.a, for somen′ ≥ m′. BecauseR is compatible withP ,
there existsτ ∈ P such thatτ = re(n) andi.a appears inτ . Let τ ′ be the trace
identical toτ except thati.a is replaced byi′.a. BecauseP is strongly anonymous
on A, P = f−1

A (fA(P)), andτ ′ ∈ P . By compatibility, there exists a runr′

such thatr′e(n) = τ ′ andr′o(n) = fA(τ ′). By construction,fA(τ) = fA(τ ′), so
ro(n) = r′o(n). Because the length-m trace prefixes offA(τ) andfA(τ ′) are the
same, it follows thatro(m) = r′o(m). Because(I, r′,m) |= θ(i′, a), (I, r,m) |=
Po[θ(i′, a)] as required.

Conversely, suppose that for every agenti ∈ IA, the actiona performed byi
is anonymous up toIA with respect too in I. We must show thatP is strongly
anonymous. It is clear thatP ⊆ f−1

A (fA(P)), so we must show only thatP ⊇
f−1

A (fA(P)). So suppose thatτ ∈ f−1
A (fA(P)). If no eventi.a appears inτ , for

any i ∈ IA, thenτ ∈ P trivially. Otherwise, somei.a. does appear. Because
τ ∈ f−1

A (fA(P)), there exists a traceτ ′ ∈ P that is identical toτ except thati′.a
replacesi.a, for some otheri′ ∈ IA. BecauseR is compatible withP , there exists
a runr′ ∈ R such thatr′o(m) = fA(τ ′) andr′e(m) = τ ′ (wherem = |τ ′|). Clearly
(I, r′,m) |= θ(i′, a) so, by anonymity,(I, r′,m) |= Po[θ(i, a)], and there exists a
run r such thatro(m) = r′o(m) and(I, r,m) |= θ(i, a). Because the actiona can

26

be performed at most once, the tracere(m) must be equal toτ . By compatibility,
τ ∈ P as required.

Up to now, we have assumed that the observero has access to all the infor-
mation in the system except which event inA was performed. Schneider and
Sidiropoulos extend their definition of strong anonymity to deal with agents that
have somewhat less information. They capture “less information” usingabstrac-
tion operators. Given a processP , there are several abstraction operators that can
give us a new process. For example thehiding operator, represented by\, hides
all events in some setC. That is, the processP\C is the same asP except that
all events inC become internal events of the new process, and are not included in
the traces associated withP\C. Another abstraction operator, the renaming oper-
ator, has already appeared in the definition of strong anonymity: for any setC of
events, we can consider the functionfC that maps events inC to a fixed new event.
The difference between hiding and renaming is that, if events inC are hidden, the
observer is not even aware they took place. If events inC are renamed, then the
observer is aware that some event inC took place, but does not know which one.

Abstraction operators such as these provide a useful way to model a process
or agent who has a distorted or limited view of the system. In the context of
anonymity, they allow anonymity to hold with respect to an observer with a limited
view of the system in cases where it would not hold with respect to an observer who
can see everything. In the anonymous donations example, hiding the events $5 and
$10, i.e., the amount of money donated, would make the new processP\{$5, $10}
strongly anonymous on the set of donation events. Formally, given an abstraction
operatorABSC on a set of eventsC, we have to check the requirement of strong
anonymity on the processABSC(P) rather than on the processP .

Abstraction is easily captured in our framework. It amounts simply to changing
the local state of the observer. For example, anonymity of the processP\C in our
framework corresponds to anonymity of the actiona for every agent inIA with
respect to an observer whose local state at the point(r,m) is fA(re(m))\C. We
omit the obvious analogue of Theorem 5.1 here.

A major advantage of the runs and systems framework is that definitions of
high-level properties such as anonymity do not depend on the local states of the
agents in question. If we want to model the fact that an observer has a limited
view of the system, we need only modify her local state to reflect this fact. While
some limited views are naturally captured by CSP abstraction operators, others
may not be. The definition of anonymity should not depend on the existence of
an appropriate abstraction operator able to capture the limitations of a particular
observer.

As we have demonstrated, our approach to anonymity is compatible with the

27

approach taken in [Schneider and Sidiropoulos 1996]. Our definitions are stated in
terms of actions, agents, and knowledge, and are thus very intuitive and flexible.
The generality of runs and systems allows us to have simple definitions that apply
to a wide variety of systems and agents. The low-level CSP definitions, on the other
hand, are more operational than ours, and this allows easier model-checking and
verification. Furthermore, there are many advantages to using process algebras in
general: systems can often be represented much more succinctly, and so on. This
suggests that both approaches have their advantages. Because CSP systems can be
represented in the runs and systems framework, however, it makes perfect sense
to define anonymity for CSP processes using the knowledge-based definitions we
have presented here. If our definitions turn out to be equivalent to more low-level
CSP definitions, this is ideal, because CSP model-checking programs can then be
used for verification. A system designer simply needs to take care that the runs-
based system derived from a CSP process (or set of processes) represents the local
states of the different agents appropriately.

5.3 Anonymity and Function View Semantics

Hughes and Shmatikov [2004] introducefunction viewsand function-viewopaque-
nessas a way of expressing a variety of information-hiding properties in a succinct
and uniform way. Their main insight is that requirements such as anonymity in-
volve restrictions on relationships between entities such as agents and actions. Be-
cause these relationships can be expressed by functions from one set of entities
to another, hiding information from an observer amounts to limiting an observer’s
view of the function in question. For example, anonymity properties are concerned
with whether or not an observer is able to connect actions with the agents who
performed them. By considering the function from the set of actions to the set of
agents who performed those actions, and specifying the degree to which that func-
tion must be opaque to observers, we can express anonymity using the function-
view approach.

To model the uncertainty associated with a given function, Hughes and Shmatikov
define a notion offunction knowledgeto explicitly represent an observer’s partial
knowledge of a function. Function knowledge focuses on three particular aspects
of a function: its graph, image, and kernel. (Recall that thekernelof a functionf
with domainX is the equivalence relationker onX defined by(x, x′) ∈ ker iff
f(x) = f(x′).) Function knowledgeof typeX → Y is a tripleN = (F, I,K),
whereF ⊆ X × Y , I ⊆ Y , andK is an equivalence relation onX. A triple
(F, I,K) is consistent withf if f ⊆ F , I ⊆ imf , andK ⊆ kerf . Intuitively,
a triple (F, I,K) that is consistent withf represents what an agent might know
about the functionf . Complete knowledge of a functionf , for example, would be

28

represented by the triple(f, imf, kerf).
For anonymity, and for information hiding in general, we are interested not in

what an agent knows, but in what an agent doesnot know. This is formalized by
Hughes and Shmatikov in terms of opaqueness conditions for function knowledge.
If N = 〈F, I,K〉 is consistent withf : X → Y , then, for example,N is k-value
opaqueif |F (x)| ≥ k for all x ∈ X. That is,N is k-value opaque if there arek
possible candidates for the value off(x), for all x ∈ X. Similarly,N is Z-value
opaqueif Z ⊆ F (x) for all x ∈ X. In other words, for eachx in the domain off ,
no element ofZ can be ruled out as a candidate forf(x). Finally,N is absolutely
value opaqueif thatN is Y -value opaque.

Opaqueness conditions are closely related to the nonprobabilistic definitions
of anonymity given in Section 3. Consider functions fromX to Y , whereX is
a set of actions andY is a set of agents, and suppose that some functionf is the
function that, given some action, names the agent who performed the action. If
we havek-value opaqueness for some view off (corresponding to some observer
o), this means, essentially, that each actiona in X is k-anonymous with respect
to o. Similarly, the view isIA-value opaque if the action is anonymous up toIA
for each agenti ∈ IA. Thus, function view opaqueness provides a concise way of
describing anonymity properties, and information-hiding properties in general.

To make these connections precise, we need to explain how function views
can be embedded within the runs and systems framework. Hughes and Shmatikov
already show how we can define function views using Kripke structures, the stan-
dard approach for giving semantics to knowledge. A minor modification of their
approach works in systems too. Assume we are interested in who performs an ac-
tion a ∈ X, whereX, intuitively, is a set of “anonymous actions”. LetY be the
set of agents, including a “nobody agent” denotedN , and letf be a function from
X to Y . Intuitively, f(a) = i if agenti performs actiona, andf(a) = N if no
agent performs actiona. The value of the functionf will depend on the point. Let
fr,m be the value off at the point(r,m). Thus,fr,m(a) = i if i performsa in run
r. 2 We can now easily talk about function opaqueness with respect to an observer
o. For example,f isZ-value opaque at the point(r,m) with respect too if, for all
z ∈ Z, there exists a point(r′,m′) such thatr′o(m

′) = ro(m) andf(r′,m′)(x) = z.
In terms of knowledge,Z-value opaqueness says that for any valuex in the range
of f , o thinks it possible that any valuez ∈ Z could be the result off(x). In-
deed, Hughes and Shmatikov say that function-view opaqueness, defined in terms
of Kripke structure semantics, is closely related to epistemic logic. The following
proposition makes this precise; it would be easy to state similar propositions for

2Note that forf(r,m) to be well-defined, it must be the case that only one agent can ever perform
a single action.

29

other kinds of function-view opaqueness.

Proposition 5.2: LetI = (R, π) be an interpreted system that satisfies(I, r,m) |=
f(x) = y wheneverf(r,m)(x) = y. In systemI, f isZ-value opaque for observer
o at the point(r,m) if and only if

(I, r,m) |=
∧

x∈X

∧
z∈Z

Po[f(x) = z].

Proof: This result follows immediately from the definitions.

Stated in terms of knowledge, function-view opaqueness already looks a lot
like our definitions of anonymity. Givenf (or, more precisely, the set{f(r,m)} of
functions) mapping actions to agents, we can state a theorem connecting anonymity
to function-view opaqueness. There are two minor issues to deal with, though.
First, our definitions of anonymity are stated with respect to a single actiona,
while the functionf deals with asetof actions. We can deal with this by taking the
domain off to be the singleton{a}. Second, our definition of anonymity up to a
setIA requires the observer to suspect agents inIA only if i actually performs the
actiona. (Recall this is also true for Syverson and Stubblebine’s definitions.)IA-
value opaqueness requires the observer to think many agents could have performed
an action even if nobody has. To deal with this, we require opaqueness only when
the action has been performed by one of the agents inIA.

Theorem 5.3: Suppose that(I, r,m) |= θ(i, a) exactly iff(r,m)(a) = i. Then
actiona is anonymous up toIA with respect too for each agenti ∈ IA if and only
if at all points(r,m) such thatf(r,m)(a) ∈ IA, f is IA-value opaque with respect
to o.

Proof: Suppose thatf is IA-value opaque, and leti ∈ IA be given. If(I, r,m) |=
θ(i, a), thenf(r,m)(a) = i. We must show that, for alli′ ∈ IA, (I, r,m) |=
Po[θ(i′, a)]. Becausef is IA-value opaque at(r,m), there exists a point(r′,m′)
such thatr′o(m

′) = ro(m) andf(r′,m′)(a) = i′. Because(I, r′,m′) |= θ(i′, a),
(I, r,m) |= Po[θ(i′, a)].

Conversely, suppose that for each agenti ∈ IA, a is anonymous up toIA
with respect too. Let (r,m) be given such thatf(r,m)(a) ∈ IA, and let thati =
f(r,m)(a). It follows that (I, r,m) |= θ(i, a). For anyi′ ∈ IA, (I, r,m) |=
Po[θ(i′, a)], by anonymity. Thus there exists a point(r′,m′) such thatr′o(m

′) =
ro(m) and (I, r′,m′) |= θ(i′, a). It follows that f(r′,m′)(a) = i′, and thatf is
IA-value opaque.

As with Proposition 5.2, it would be easy to state analogous theorems con-
necting our other definitions of anonymity, including minimal anonymity, total

30

anonymity, andk-anonymity, to other forms of function-view opaqueness. We
omit the details here.

The assumptions needed to prove Theorem 5.3 illustrate two ways in which
our approach may seem to be less general than the function-view approach. First,
all our definitions are given with respect to a single action, rather than with respect
to a set of actions. However, it is perfectly reasonable to specify that all actions in
some setA of actions be anonymous. Then we could modify Theorem 5.3 so that
the functionf is defined on all actions inA. (We omit the details.) Second, our
definitions of anonymity only restrict the observer’s knowledge if somebody actu-
ally performs the action. This is simply a different way of defining anonymity. As
mentioned previously, we are not trying to give a definitive definition of anonymity,
and it certainly seems reasonable that someone might want to define or specify
anonymity using the stronger condition. At any rate, it would be straightforward to
modify our definitions so that the implications, involvingθ(i, a), are not included.

Hughes and Shmatikov argue that epistemic logic is a useful language for ex-
pressing anonymity specifications, while CSP is a useful language for describing
and specifying systems. We agree with both of these claims. They propose func-
tion views as a useful interface to mediate between the two. We have tried to argue
here that no mediation is necessary, since the multiagent systems framework can
also be used for describing systems. (Indeed, the traces of CSP can essentially be
viewed as runs.) Nevertheless, we do believe that function views can be the ba-
sis of a useful language for reasoning about some aspects of information hiding.
We can well imagine adding abbreviations to the language that let us talk directly
about function views. (We remark that we view these abbreviations as syntactic
sugar, since these are notions that can already be expressed directly in terms of the
knowledge operators we have introduced.)

On the other hand, we believe that function views are not expressive enough
to capture all aspects of information hiding. One obvious problem is adding prob-
ability. While it is easy to add probability to systems, as we have shown, and to
capture interesting probabilistic notions of anonymity, it is far from clear how to
do this if we take function views triples as primitive.

To sum up, we would argue that to reason about knowledge and probability,
we need to have possible worlds as the underlying semantic framework. Using
the multiagent systems approach gives us possible worlds in a way that makes
it particularly easy to relate them to systems. Within this semantic framework,
function views may provide a useful syntactic construct with which to reason about
information hiding.

31

6 Discussion

We have described a framework for reasoning about information hiding in multia-
gent systems, and have given general definitions of anonymity for agents acting in
such systems. We have also compared and contrasted our definitions to other sim-
ilar definitions of anonymity. Our knowledge-based system framework provides a
number of advantages:

• We are able to state information-hiding properties succinctly and intuitively,
and in terms of the knowledge of the observers or attackers who interact with
the system.

• Our system has a well-defined semantics that lets us reason about knowledge
in systems of interest, such as systems specified using process algebras or
strand spaces.

• We are able to give straightforward probabilistic definitions of anonymity,
and of other related information-hiding properties.

There are a number of issues that this paper has not addressed. We have focused
almost exclusively on properties of anonymity, and have not considered related
notions, such aspseudonymityand unlinkability [Hughes and Shmatikov 2004;
Pfitzmann and K̈ohntopp 2001]. There seems to be no intrinsic difficulty capturing
these notions in our framework. For example, one form of message unlinkability
specifies that no two messages sent by an anonymous sender can be “linked”, in
the sense that an observer can determine that both messages were sent by the same
sender. More formally, two actionsa anda′ are linked with respect to an observero
if o knows that there exists an agenti who performed botha anda′. This definition
can be directly captured using knowledge. Its negation says thato considers it
possible that there exist two distinct agents who performeda anda′; this can be
viewed as a definition ofminimal unlinkability. This minimal requirement can
be strengthened, exactly as our definitions of anonymity were, to include larger
numbers of distinct agents, probability, and so on. Although we have not worked
out the details, we believe that our approach will be similarly applicable to other
definitions of information hiding.

Another obviously important issue is checking whether a given system speci-
fies the knowledge-based properties we have introduced. The standard technique
for doing this is model checking. Recent work on the problem of model checking
in the multiagent systems framework suggests that this may be viable. Van der
Meyden [1998] discusses algorithms and complexity results for model checking a
wide range of epistemic formulas in the runs and systems framework, and van der

32

Meyden and Su [2004] use these results to verify the dining cryptographers proto-
col [Chaum 1988], using formulas much like those described in Section 3.3. Even
though model checking of formulas involving knowledge seems to be intractable
for large problems, these results are a promising first step towards being able to
use knowledge for both the specification and verification of anonymity properties.
Shmatikov [2002], for example, analyzes the Crowds system using the probabilis-
tic model checker PRISM [Kwiatkowska, Norman, and Parker 2001]. This is a
particularly good example of how definitions of anonymity can be made precise
using logic and probability, and how model-checking can generate new insights
into the functioning of a deployed protocol.

Finally, it is important to note that the examples considered in this paper do
not reflect the state of the art for computational anonymity. Anonymity proto-
cols based on DC-nets, while theoretically interesting, have not been widely de-
ployed; in practice, protocols based on mixes and message-rerouting are much
more common. We used the dining cryptographer’s problem as a running example
here mainly because of its simplicity, but it remains to be seen whether our general
approach will be as illuminating for more complicated protocols. There are reasons
to believe that it will be. Shmatikov’s analysis of Crowds shows that a logic-based
approach can be useful for analyzing protocols based on message-rerouting. Fur-
thermore, we believe that formalizing anonymity protocols using techniques like
ours is worthwhile even if formal verification is impractical or impossible. It forces
system designers to think carefully about information-hiding requirements, which
can often be tricky, and provides a system-independent framework for comparing
the anonymity guarantees provided by different systems.

We described one way to generate a set of runs from a CSP processP , ba-
sically by recording all the events in the state of the environment and describing
some observero who is able to observe a subset of the events. This translation was
useful for comparing our abstract definitions of anonymity to more operational
CSP-based definitions. In future work we hope to further explore the connections
between the runs and systems framework and tools such as CCS, CSP, and the spi
calculus [Abadi and Gordon 1997]. In particular, we are interested in the recent
work of Fournet and Abadi [2003], who use the applied pi calculus to modelpri-
vate authentication, according to which a principal in a network is able to authen-
ticate herself to another principal while remaining anonymous to other “nearby”
principals. A great deal of work in computer security has formalized information-
hiding properties using these tools. Such work often reasons about the knowledge
of various agents in an informal way, and then tries to capture knowledge-based
security properties using one of these formalisms. By describing canonical trans-
lations from these formalisms to the runs and systems framework, we hope to be
able to demonstrate formally how such definitions of security do (or do not) capture

33

notions of knowledge.

Acknowledgments: We thank Dan Grossman, Dominic Hughes, Vitaly Shmatikov,
Paul Syverson, Vicky Weissman, the CSFW reviewers (who were anonymous up
to PCSFW , the program committee), and the JCS referees, for useful discussions,
helpful criticism, and careful copy-editing.

References

Abadi, M. and A. D. Gordon (1997). A calculus for cryptographic protocols:
The spi calculus. InFourth ACM Conference on Computer and Communi-
cations Security, pp. 36–47.

Chaum, D. (1988). The dining cryptographers problem: Unconditional sender
and recipient untraceability.Journal of Cryptology 1(1), 65–75.

Danezis, G. (2003). Mix-networks with restricted routes. In R. Dingledine
(Ed.), Proc. Privacy Enhancing Technologies Workshop (PET 2003), Vol-
ume 2760 ofLecture Notes in Computer Science, Berlin/New York, pp. 54–
68. Springer-Verlag.

Diaz, C., S. Seys, J. Claessens, and B. Preneel (2002). Towards measuring
anonymity. In R. Dingledine and P. Syverson (Eds.),Proc. Privacy Enhanc-
ing Technologies Workshop (PET 2002), Volume 2482 ofLecture Notes in
Computer Science, Berlin/New York, pp. 54–68. Springer-Verlag.

Fagin, R., J. Y. Halpern, and N. Megiddo (1990). A logic for reasoning about
probabilities.Information and Computation 87(1/2), 78–128.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995).Reasoning about
Knowledge. Cambridge, Mass.: MIT Press.

Focardi, R. and R. Gorrieri (2001). Classification of security properties (Part
I: Information flow). In Foundations of Security Analysis and Design, pp.
331–396. Springer.

Fournet, C. and M. Abadi (2003). Hiding names: Private authentication in
the applied pi calculus. InProc. International Symposium on Software Se-
curity (ISSS 2002), Volume 2609 ofLecture Notes in Computer Science,
Berlin/New York, pp. 317–338. Springer-Verlag.

Glasgow, J., G. MacEwen, and P. Panangaden (1992). A logic for reasoning
about security.ACM Transactions on Computer Systems 10(3), 226–264.

34

Goel, S., M. Robson, M. Polte, and E. G. Sirer (2002). Herbivore: A scal-
able and efficient protocol for anonymous communication. Unpublished
manuscript.

Gray, J. W. and P. F. Syverson (1998). A logical approach to multillevel security
of probabilistic systems.Distributed Computing 11(2), 73–90.

Halpern, J. Y. and K. O’Neill (2002). Secrecy in multiagent systems. In
Proc. 15th IEEE Computer Security Foundations Workshop, pp. 32–46.

Halpern, J. Y. and K. O’Neill (2003). Anonymity and information hiding in mul-
tiagent systems. InProc. 16th IEEE Computer Security Foundations Work-
shop, pp. 75–88.

Halpern, J. Y. and R. Pucella (2001). On the relationship between strand spaces
and multi-agent systems. InProc. Eighth ACM Conference on Computer
and Communications Security, pp. 106–115. To appear,ACM Transactions
on Information and System Security.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries.
Journal of the ACM 40(4), 917–962.

Hoare, C. (1985).Communicating Sequential Processes. Prentice-Hall.

Hughes, D. and V. Shmatikov (2004). Information hiding, anonymity and pri-
vacy: a modular approach.Journal of Computer Security 12(1), 3–36.

Kwiatkowska, M., G. Norman, and D. Parker (2001). PRISM: Probabilistic
symbolic model checker. In P. Kemper (Ed.),Proc. Tools Session of Aachen
2001 International Multiconference on Measurement, Modelling and Eval-
uation of Computer-Communication Systems, pp. 7–12. Available as Tech-
nical Report 760/2001, University of Dortmund.

Levine, B. and C. Shields (2002). Hordes: A multicast based protocol for
anonymity.Journal of Computer Security 10(3), 213–240.

Milner, R. (1980).A Calculus of Communicating Systems. Lecture Notes in
Computer Science, Vol. 92. Berlin/New York: Springer-Verlag.

Pfitzmann, A. and M. K̈ohntopp (2001). Anonymity, unobservability, and
pseudeonymity: a proposal for terminology. InInternational Workshop on
Designing Privacy Enhancing Technologies, New York, pp. 1–9. Springer-
Verlag.

Reiter, M. and A. Rubin (1998). Crowds: Anonymity for web transactions.ACM
Transactions on Information and System Security 1(1), 66–92.

Schneider, S. (1996). Security Properties and CSP. InProc. 1996 IEEE Sympo-
sium on Security and Privacy, pp. 174–187.

35

Schneider, S. and A. Sidiropoulos (1996). CSP and anonymity. InEuropean
Symposium on Research in Computer Security, pp. 198–218.

Serjantov, A. and G. Danezis (2002). Towards an information theoretic metric
for anonymity. In R. Dingledine and P. Syverson (Eds.),Proc. Privacy En-
hancing Technologies Workshop (PET 2002), Volume 2482 ofLecture Notes
in Computer Science, Berlin/New York, pp. 41–53. Springer-Verlag.

Sherwood, R., B. Bhattacharjee, and A. Srinivasan (2002). P5: A protocol for
scalable anonymous communication. InIEEE Symposium on Security and
Privacy, pp. 58–70.

Shmatikov, V. (2002). Probabilistic analysis of anonymity. InProc. 15th Com-
puter Security Foundations Workshop, pp. 119–128.

Syverson, P. F., D. M. Goldschlag, and M. G. Reed (1997). Anonymous connec-
tions and onion routing. InIEEE Symposium on Security and Privacy, pp.
44–54.

Syverson, P. F. and S. G. Stubblebine (1999). Group principals and the formal-
ization of anonymity. InWorld Congress on Formal Methods, pp. 814–833.

Thayer, F. J., J. C. Herzog, and J. D. Guttman (1999). Strand spaces: Proving
security protocols correct.Journal of Computer Security 7(2/3), 191–230.

van der Meyden, R. (1998). Common knowledge and update in finite environ-
ments.Information and Computation 140(2), 115–157.

van der Meyden, R. and K. Su (2004). Symbolic model checking the knowl-
edge of the dining cryptographers. InProc. 17th IEEE Computer Security
Foundations Workshop. To appear.

von Ahn, L., A. Bortz, and N. J. Hopper (2003).k-anonymous message trans-
mission. In10th ACM Conference on Computer and Communications Secu-
rity, pp. 122–130.

Zdancewic, S. and A. C. Myers (2001). Robust declassification. InProc. 14th
IEEE Computer Security Foundations Workshop, pp. 15–23.

36

