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Abstract

We provide a framevork for reasoning about
information-hiding requirementsin multiagent systems
and for reasoningabout anonymityin particular. Our
framavork employsthe modal logic of knowledg within
the context of the runsand systemg$ramevork, mud in the
spirit of our earlier work on sececy[9]. We give several
definitions of anonymitywith respectto agents, actions,
and observes in multiagent systemsand we relate our
definitionsof anonymityto other definitionsof information
hiding, suc as sececy We also give probabilistic defini-
tions of anonymitythat are able to quantify an observers
uncertaintyaboutthe stateof the systemFinally, werelate
our definitions of anonymityto other formalizations of
anonymityand information hiding, including definitionsof
anonymityin the processalgebra CSP and definitions of
informationhiding usingfunctionviews.

1 Intr oduction

The primary goal of this paperis to provide a formal
framework for reasoningabout anorymity in multiagent
systems.The importanceof anorymity hasincreasedver
the pastfew yearsasmorecommunicatiorpasse®ver the
Internet. Web-bravsing, message-sendingndfile-sharing
areall importantexamplesof activities thatcomputerusers
would like to engagen, but may be reluctantto do unless
they canreceve guaranteethattheiranorymity will bepro-
tectedto somereasonablelegree. Systemsare being built
that attemptto implementanorymity [7, 15]. It would be
helpfulto have aformalframeaworkin whichto reasorabout
thelevel of anorymity thatsuchsystemsprovide.

We view anorymity as an instanceof a more general
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problem:informationhiding. In thetheoryof computerse-
curity, mary of the fundamentaproblemsandmuchof the
researcthasbeenconcerneavith thehiding of information.
Cryptographyfor instance s usedto hide the contentsof
a messagdrom untrustedobsenersasit passegrom one
party to another Anonymity requirementsare intendedto
ensurehattheidentity of theagentwho performssomeac-
tion remainshiddenfrom otherobsenrers. Noninterference
requirementgssentiallysaythateverythingaboutclassified
or high-level usersof a systemshouldbe hiddenfrom low-
level users.Privacy is a catch-alltermthatmeandifferent
thingsto differentpeople,but it typically involves hiding
personabr privateinformationfrom others.

Information-hiding properties such as these can be
thoughtof asproviding answerdo thefollowing setof ques-
tions:

¢ Whatinformationneedgo be hidden?
¢ Whodoesit needto be hiddenfrom?
o How well doesit needto be hidden?

By analyzing security propertieswith thesequestionsin

mind, it often becomesclear how different propertiesre-
late to eachother Thesequestionsanalsosere asa test
of adefinition’s usefulnessaninformation-hidingproperty
shouldbeableto provide clearanswerdo thesethreeques-
tions.

In anearlierpaper[9], we formalizedsecreg andnon-
interferencan termsof knowledge. Roughlyspeaking se-
creq is preseredif the low-level usernever knows ary-
thing aboutthe high-level userthathedidn’t initially know.
Knowledgeprovidesa naturalway to expressinformation-
hiding properties—informations hiddenfrom a if a does
not know aboutit. Not surprisingly our formalizationof
anorymity is similar in spirit to our formalization of se-
cregy. Our definition of secreg saysthata classifiedagent
maintainssecreg with respecto anunclassifiecagentf the
unclassifiedagentdoesnt learnarny new factthat depends
only onthestateof theclassifiedagent.Thatis, if theagent
didn’t know a classifiedfact ¢ to startwith, thenthe agent



doesnt know it atary pointin the system.Our definitions
of anorymity saythatanagentperforminganactionmain-
tainsanorymity with respecto anobsenrerif the obsener
never learnscertainfactshaving to do with whetheror not
theagentperformedtheaction.

It turnsoutthatthereare somesubtlebut importantdif-
ferencesbetweensecreg and some standardnotions of
anorymity. It is possiblefor i to presere completese-
cregy while still not having muchanorymity, for example,
andit is possibleto have anorymity without preservingse-
creg. Consideringthe relationshipbetweensecreg and
anorymity suggestsiew and interestingways of thinking
aboutanorymity. More generally formalizing anorymity
andinformationhiding in termsof knowledgeis usefulfor
capturingtheintuitionsthatpractitionershave.

We are not the first to useknowledgeandbelief to for-
malizenotionsof informationhiding. Glasgav, MacEwen,
and Panangadelj6] describea logic for reasoningabout
securitythatincludesboth epistemicperatorgfor reason-
ing aboutknowledge)anddeonticoperatorgfor reasoning
aboutpermissionand obligation). They characterizesome
securitypoliciesin termsof the factsthat an agentis per
mitted to know. Intuitively, everythingthatan agentis not
permittedto know mustremainhidden. Our approachis
similar, exceptthatwe specifytheformulasthatanagentis
notallowedto know, ratherthanthe formulassheis permit-
tedto know. Oneadwantageof accentuatinghe negative is
thatwe do not needto usedeonticoperatorsn ourlogic.

Epistemic logics have also been used to define
information-hiding properties, including noninterference
and anorymity. Gray and Syverson[8] usean epistemic
logic to defineprobabilisticnoninterferenceand Syverson
and Stubblebine[19] use one to formalize definitions of
anorymity. The thrustof our paperis quite differentfrom
these. Gray and Syversonfocus on one particular defini-
tion of information hiding in a probabilisticsetting, while
Sywersonand Stubblebingocuson axiomsfor anorymity.
Ourfocus,onthe otherhand,is on giving a semanticchar
acterizationof anorymity in a framework that lendsitself
well to modelingsystems.

Shmatilov and Hughes[13] position their approachto
anorymity (whichis discussed moredetailin Sections.3)
asan attemptto provide an interfacebetweenlogic-based
approacheswhich they claim are goodfor specifyingthe
desiredproperties(like anorymity), and formalismslike
CSRwhichthey claimaregoodfor specifyingsystemsWe
agreewith their claimthatlogic-basedpproachearegood
for specifying propertiesof systems,but also claim that,
with anappropriatesemanticgor thelogic, thereis noneed
to provide suchaninterface.While therearemary waysof
specifyingsystemsmary endup identifying a systemwith
asetof runsor tracesandcanthusbeembeddedh theruns
andsystemdramawvork thatwe use.

Definitionsof anorymity usingepistemicogic are pos-
sibilistic. Certainly if j believesthatany of 1000users(in-
cludings) couldhave performedheactionthats in factper
formed,then¢ hassomedegreeof anorymity with respect
to j. However, if j believesthatthe probability thati per
formedthe actionis in fact.99, the possibilisticassurance
of anorymity provideslittle comfort. To the bestof our
knowledge,all previous formalizationsof anorymity have
beenpossibilistic. The paperspresentingheseformaliza-
tions typically concludewith the acknavledgmentthat it
is importantto captureprobability, and suggesthatit can
be handledin the formalism. Onesignificantadvantageof
our formalismis thatit is completelystraightforvardto add
probabilityin a naturalway, usingknown techniqueg11].

The restof this paperis organizedasfollows. In Sec-
tion 2 we briefly review the runsandsystemgormalismof
[4] anddescribehow it canbeusedto represenknowledge.
In Section3, we shav how anorymity can be definedus-
ing knowledge,andrelatethis definitionto othernotionsof
information hiding, particularly secrey (asdefinedin our
earlierwork). In Section4, we extendthe possibilisticdef-
inition of Section3 sothatit cancaptureprobabilisticcon-
cerns. As othershave obsened [13, 15, 19|, therearea
numberof waysto defineanorymity. Somedefinitionspro-
vide very strongguaranteesf anorymity, while othersare
easietto verify in practice.Ratherthangiving anexhaustve
list of definitions,we focuson a few representatie notions,
andshav by examplethat our logic is expressve enough
to capturemary othernotionsof interest.In Section5, we
compareour frameawork to that of three other attemptsto
formalize anorymity, by Schneiderand Sidiropoulos[17],
HughesandShmatilov [13], andStubblebineandSyverson
[19]. We concludein Section6.

2 Multiagent Systems:A Review

In this section,we briefly review the multiagentsystems
framework; we urgethereaderto consult[4] for morede-
tails.

A multiagentsystentonsistof n agentsgachof which
is in somelocal stateat a givenpointin time. We assume
that an agents local stateencapsulateall the information
to which the agenthasaccess.In the securitysetting,the
local stateof anagentmightincludeinitial informationre-
gardingkeys, the messageshehassentandreceved, and
perhapshe readingof a clock. The framewvork makesno
assumptionaboutthe precisenatureof thelocal state.

We canview the whole systemasbeingin someglobal
state atuple consistingof the local stateof eachagentand
the stateof the ervironment. Thus, a global statehasthe
form (s, s1, - - -, Sn), Wheres, is the stateof the erviron-
mentands; is agenti'sstatefori = 1,...,n.

A runis afunctionfrom timeto globalstatesintuitively,



arunis a completedescriptionof what happensver time
in one possibleexecutionof the system. A pointis a pair
(r,m) consistingof a runr andatime m. We malke the
standardassumptiorthattime rangesover the naturalnum-
bers. At a point (r,m), the systemis in someglobal state
r(m). If r(m) = (s, s1,---,8n), thenwe take r;(m) to

be s;, agenti’s local stateat the point (r,m). Formally, a
systenconsistsof a setof runs(or executions).Let P(R)

denotethe pointsin asysteniR.

The runs and systemsframework is compatiblewith
mary other standardapproachegor representingand rea-
soningaboutsystemsFor example therunsmightbeevent
tracesgeneratedy a CSPprocess(seeSection5.2), they
might be message-passirgpquencegeneratedy a secu-
rity protocol,or they mightbegeneratedrom thestrandsn
astrandspacq10]. Theapproachs rich enoughto accom-
modatea variety of systenrepresentations.

Anotherimportantadvantageof the framework is thatit
it is straightforvardto defineformally whatanagentknows
ata pointin a system.Givena systemR, let K;(r,m) be
thesetof pointsin P(R) thati thinksarepossibleat (r, m),
ie.,

Ki(r,m) ={(r',m') € P(R) : ri(m/) = ri(m)}.

Agent: knows a factp ata point (r,m) if ¢ is trueatall
pointsin X;(r, m). To make this intuition precise we need
to be ableto assigntruth valuesto basicformulasin a sys-
tem. We assumehatwe have a set® of primitive proposi-
tions,which we canthink of asdescribingbasicfactsabout
thesystem.In the context of securityprotocols thesemight
besuchfactsas“the key isn” or “agentA sentthemessage
m to B". An interpretedsystenmZ consistof apair (R, ),
whereR is a systemandr is aninterpretation which as-
signsto eachprimitive propositionsin & a truth value at
eachpoint. Thus,for everyp € ® andpoint (r,m) in R,
we have (w(r,m))(p) € {true, false}.

We cannow definewhatit meansfor a formulay to be
true at a point (r,m) in an interpretedsystemZ, written
(Z,r,m) = ¢, by inductionon the structureof formulas:

o (Z,r,m) E piff (x(r,m))(p) = true
o (Z,r,m) £ iff (Z,r,m) £ o
o (Z,r,m) | @At (Z,r,m) | pand(Z,r,m) =

e (Z,r,m) | K;piff (Z,7',m") | ¢ for all
(r',m") € Ki(r,m)

As usual,we write Z | ¢ if (Z,r,m) = ¢ for all points
(r,m)inZ.

3 Defining Anonymity Using Knowledge
3.1 Information-Hiding Definitions

Anonymity is oneexampleof aninformation-hidingre-
guirement.Otherinformation-hidingrequirementsnclude
noninterferenceprivagy, confidentiality securemessage-
sending,and so on. Theserequirementsare similar, and
sometimeghey overlap. Noninterferencefor example,re-
quiresa greatdealto be hidden,andtypically implies pri-
vagy, anorymity, etc.,for the classifieduserwhosestateis
protectedby the noninterferenceequirement.

In [9], we looked at noninterferencgor sececy) re-
guirementsin multiagentsystems. Secreyg basically re-
quiresthatin a systemwith “classified” and“unclassified”
users,the unclassifiedusersshould never be able to in-
fer the actionsor the local statesof the unclassifiedusers.
For secrey, the “what needsto be hidden” component
of information-hidingis extremelyrestrictve: secrey re-
quiresthatabsolutelyeverythingthata classifieduserdoes
mustbe hidden. The “how well doesit needto be hidden”
componentependwon the situation. Our definition of se-
creqy saysthatfor any nontrivial facty (thatis, onethatis
not alreadyvalid) thatdependonly the stateof the classi-
fied or high-level agent,the formula—K ;¢ mustbe valid.
(See[9] for more discussionof this definition.) Seman-
tically, this meansthat whaterer the high-level userdoes,
thereexistssomerun wherethelow-level usersview of the
systemis the same,but the high-level userdid something
different. Thenonprobabilistidefinitionswe givein [9] are
fairly strong(simply becauseecreg requiresthatsomuch
behidden).Theprobabilisticdefinitionsrequireevenmore:
notonly cantheagentnotlearnany new classifiedfact, but
he also cannotlearnarything aboutthe probability of ary
suchfact. (In otherwords, if an agentinitially assignsa
classifiedfacty aprobabilitya of beingtrue,healwaysas-
signsyp thatprobability) It would be perfectlynatural,and
possiblyquiteinterestingto considerefinitionsof secreg
thatdo not requiresomuchto be hidden(e.g.,by allowing
someclassifiedinformationto be declassified22]), or to
discussdefinitionsthat do not requiresuchstrongsecreg
(e.g.,by giving definitionsthatwerestrongerthanthe non-
probabilisticdefinitionswe gave, but not quite sostrongas
theprobabilisticdefinitions).

3.2 Defining Anonymity

The basic intuition behind anorymity is that actions
should be divorced from the agents who perform them,
for some set of observes. With respectto the basic
information-hidingframework outlinedabove, theinforma-
tion that needsto be hiddenis the identity of the agent
(or setof agents)who perform a particularaction. Who



the information needsto be hiddenfrom, i.e., which ob-
seners, dependson the situation. The third component
of information-hidingrequirements—hw well information
needgo be hidden—will oftenbethe mostinterestingcom-
ponentof thedefinitionsof anorymity thatwe presentere.

It is notourgoalin thissectionto providea“correct” def-
inition of anorymity. We alsowantto avoid giving anengy-
clopediaof definitions. Rather we give somebasicdefini-
tionsof anorymity to shov how ourframevork canbeused.
We baseour choiceof definitionsin parton definitionspre-
sentedin earlier papers,to make clear how our work re-
latesto previouswork, andin part on which definitionsof
anorymity we expectto be usefulin practice.We first give
anextremelyweakdefinition,but onethatnonethelesslus-
tratesthebasicintuition behindany definitionof anorymity.
Throughoutthe paper we usethe formulad(i, a) to repre-
sent“agenti hasperformedactiona”.

Definition 3.1 Actiona, performecby agenti, is minimally
anonymousvith respecto agentj in theinterpretedsystem
I, if Z I: —|K][5(z,a)] I

This definition makes it clear what is being hidden
(0(¢, a)—thefactthati performeda) andfrom whom (5).
It alsodescribeshow well the informationis hidden:it re-
quiresthatj notbesurethati actuallyperformedheaction.
Notethatthis is a weakinformation-hidingrequirement.t
might be the case for example,thatagent;j is certainthat
the actionwasperformedeitherby ¢, or by at mostoneor
two otheragents,therebymakingi a “prime suspect”. It
might also be the casethat j is ableto placea very high
probabilityoni’s having performedheaction,eventhough
heisn’t absolutelycertainof it. (Agentj might know that
thereis someslight probabilitythatsomeotheragent’ per
formedthe action,for example.) Nonethelesst shouldbe
the casethatfor any otherdefinitionof anorymity we give,
if we wantto ensurethat’'s performingactiona is to be
keptanorymousasfar asobsenrer j is concernedtheni’s
actionshouldbeatleastminimally anorymouswith respect
to j.

Thedefinitionalsomakesit clearhow anorymity relates
to secrey, asdefinedin [9]. To explain how, we first need
to describenow we definedsecrey in termsof knowledge.
Givena systemZ, saythat is nontrivial in Z if I £ ¢,
andthaty depend®nly on thelocal stateof agenti in Z if
7T | ¢ = K;p. Intuitively, ¢ is nontrivial in Z if ¢ could
befalsein Z, andy dependonly oni’s local stateif ¢ al-
waysknows whetheror not ¢ is true. (It is easyto seethat
o depend®nly onthelocal stateof i if (Z,r,m) = ¢ and
ri(m) = ri(m') impliesthat(Z,',m") = ¢.) According
to the definitionin [9], agenti maintainstotal sececywith
respecto anotheragentj in systent if for every nontriv-
ial fact ¢ thatdependson the local stateof 4, the formula
- K is valid for the system. Thatis, i maintainstotal

secrey with respectto j if j doesnot learnarnything new
aboutagenti’s state.Notethatif agent:’s local statekeeps
track of whetheri hasperformedactiona, thend(i, a) de-
pendsonly oni’s state.lf we assumehat; did notknow all
alongthat: wasgoingto performactiona (i.e.,if weassume
thatd(i, a) is nontrivial), thenDefinition3.1is clearlyaspe-
cial caseof thedefinitionof secreg. Essentiallyanorymity
saysthatthe factthat agenti performedactiona mustbe
hiddenfrom j, while total secreg saysthat all factsthat
dependon agenti mustbe hiddenfrom j.

The next definition of anorymity we give is much
stronger It requiresthatif someagent: performsan ac-
tion anorymouslywith respectto anotheragentj, then j
mustthink it possiblethatthe actioncould have beenper
formedby any of the agentgexceptfor j). Let P;p bean
abbreviationfor ~K ;. TheoperatorP; isthedualof K;;
intuitively, P;oo means‘agent; thinksthaty is possible”.

Definition 3.2 Action a, performedby agenti, is totally
anonymousvith respecto j in theinterpretedsystemt if

Tk 8(i,a) = )\ B, a)).

i"#j

Definition 3.2captureshenotionthatanactionis anory-
mousif, asfarasthe obsererin questionis concernedit
could have beenperformedby arnybodyin the system.We
remarkthatit is very easyto shav thatif anactionis to-
tally anorymous,thenit mustbe minimally anorymousas
well, aslong astwo simplerequirementaresatisfied First,
theremustbe at least3 agentsin the system. (A college
studentwith only one roommatecant leave out her dirty
dishesanorymously but a studentwith at leasttwo room-
matesmight be ableto.) Second,t mustbe the casethat
a canbe performedonly oncein a givenrun of the system.
Otherwisejt mightbe possibléefor j to think thatany agent
i’ # i couldhave performeds, butfor j to knowthatagent
did, indeedperforma. For example considemasystemwith
threeagentsdesideg. Agent; mightknow thatall threeof
the otheragentsperformedactiona. In thatcase,in par
ticular, 5 knows that performeda, soactiona performed
by ¢ is not minimally anorymouswith respecto j, but is
totally anorymous. We anticipatethatthis assumptiorwill
typically be metin practice. It is certainly consistentvith
examplesof anorymity givenin theliterature.(See for ex-
ample,[2, 17]). In ary case|f it is notmet, it is possibleto
tag occurrence®f anaction(sothatwe cantalk aboutthe
kth time a is performed). Thus,we cantalk aboutthe ith
occurrenceof anactionbeinganorymous. Becauseheith
occurrencef anactioncanonly happeroncein ary given
run, ourrequirements satisfied.



Proposition 3.3 Suppos¢hatthereareat leastthreeagents
in theinterpretedsystent andthat

Tk N\ -[6(i,a) AS(j,a)].

i#]

If actiona, performedby agenti, is totally anonymousvith
respecto j, thenit is minimallyanonymousswell.

Proof: Suppos¢hatactiona is totally anorymous.Because
therearethreeagentsin the systemthereis someagenti’

otherthani andj, andby total anorymity, Z = 46(i,a) =

P;[6(i',a)]. If (Z,r,m) = —d(i,a), clearly (Z,r,m) =

-K;[§(i,a)]. Otherwise,(Z,r,m) = P;[6(i',a)] by to-

tal anorymity. Thus,thereexistsa point (r',m') suchthat
ri(m') = rj(m) and(Z,r',m') | 6(i',a). By ouras-
sumption,(Z,r',m') |= —d(i,a), because # i'. There-
fore, (Z,r,m) &= —-K;[6(i,a)]. It follows thata is mini-

mally anorymouswith respecto j. I

Definitions 3.1 and 3.2 are conceptuallysimilar, even
thoughthe latter definitionis much stronger Onceagain,
thereis a setof formulasthat an obserer is not allowed
to know. With the earlierdefinition, thereis only one for-
mulain this set: 6(¢,a). As longasj doesnt know thats
performedactiona, this requirements satisfied.With total
anorymity, therearemoreformulasthat is notallowedto
know: they take theform =4 (i’ a). Before,we couldguar
anteeonly that; did notknow that: did theaction;here for
mary agentsi’, we guaranteehat j doesnot know that i’
did not do the action. The definitionis madeslightly more
complicatedby the implication, which restrictsthe condi-
tions underwhich j is not allowed to know —§(i’,a). (If
¢+ didn't actually performthe action,we don’t carewhat j
thinks, sincewe are concernednly with anorymity with
respecto i.) Butthebasicideais thesame.

Note that total anorymity doesnot necessarilyfollow
from total secreg. Theformula—-é(i’,a), for i’ # 4, does
notdependnthelocal stateof ¢, but onthelocal stateof i'.
It is perfectlyconsistentvith the definition of total secrey
for j to learnthis fact. (Secreg, of course doesnot follow
from anorymity, becausesecreg requiresthat mary more
factsbe hiddenthan simply whetheri performeda given
action.)

Total anorymity is a very strongrequirementOften,an
actionwill not be totally anorymous,but only anorymous
up to somesetof agentswho could have performecthe ac-
tion. Thissituationmeritsawealerdefinitionof anorymity.
To be more precise,let I be the setof all agentsof the
systemand supposehat we have some*anonymizing set”
I, C I of agentswho canperformsomeaction. We can
defineanorymity in termsof this set.

Definition 3.4 Action a, performedby agent:, is anony-

mousupto I4 C I with respecto j if

TE6&G,a)= N P65, a)

i'€la
|

In the anorymousmessage-passirgystemHerbivore [7],
for example,usersareorganizednto cliquesCy, . .., C,. If
a userwantsto sendananorymousmessageshecando so
throughher clique. Usingthe dining cryptographergroto-
col of [2], Herbivoreprovidesguaranteethatauser; is able
to sendamessaganorymouslyupto C;, wherei € C;. As
thesizeof ausers cliquevaries,sodoesthe strengthof the
anorymity guaranteeprovidedby the system.

In somesituationsjt is notnecessarthattherebeafixed
“anonymizingset”asin Definition 3.4. It sufiicesthat,atall
times,thereexistssomeanorymizing setwith at least,say
k agentsThisleadsto a definitionof k-anorymity.

Definition 3.5: Action a, performedby agenti, is k-
anonymousvith respecto j if

V A Bl e)]

{La:|La|=k} i €la

TEd(i,a)=>

This definition saysthatat any point j mustthink it possi-
ble thatat leastk agentscould have performedthe action.
Notethat, in differentruns,therecould be differentsetsof
k agentshat; thinkscould have performedthetask.

3.3 An Example: Dining Cryptographers

A well-known example of anorymity in the computer
securityliteratureis Chaums “dining cryptographergrob-
lem” [2]. In the original descriptionof this problem,three
cryptographersit down to dinnerandareinformedby the
hostthat someonehasalreadypaid the bill anorymously
The cryptographerslecidethat the bill was paid either by
one of the three peoplein their group, or by an outside
ageng suchasthe NSA. They wantto find out which of
thesetwo situationsis the actualonewhile preservingthe
anorymity of the cryptographerwho (might have) paid.
Chaumprovidesa protocolthatthe cryptographergsanuse
to solwe this problem. To guaranteehat it works, how-
ever, it would be nice to checkthat anorymity conditions
hold. Assumingwe have a systemthat includesa set of
threecryptographeagentC' = {0, 1, 2}, aswell asanout-
sideobsenreragent, theprotocolshouldguarante¢hatfor
eachagenti € C, andeachagentj € C' — {i}, theactof
payingis anorymousupto C' — {j} with respecto j. For
anoutsideobsenero, the protocolshouldguarante¢hatfor
eachagenti € C, the protocolis anorymousupto C' with



respecto o. This canbe madepreciseusingour definition
of anorymity upto aset.

Becausedhe requirementsaresymmetricfor eachof the
three cryptographerswe can make the descriptionmore
compactby namingthe agentsusing modulararithmetic.
We usethe notations to denoteadditionmod 3.

Example 3.6: Assumethat we have an interpretedsys-
temZ = (R,w) that representdnstancesof the dining
cryptographersprotocol, wherethe interpretations inter-
pretsformulas of the form “i, paid” in the obvious way.
Thefollowing knowledge-basedequirementgsomprisethe
anorymity portion of the protocol’s specificationfor each
agent € C:

ITE 6(i,"paid”) = Pg1d(i @ 2, “paid”)
A Pigd(i @ 1,"paid”) A P,0(i & 1,“paid”)
A Pyo(i & 2,"paid”).

4 Probabilistic Variants of Anonymity
4.1 Probabilistic Anonymity

All of the definitionspresentedn Section3 werenon-
probabilistic.As we mentionedn theintroduction thisis a
seriousproblemfor the “how well is information hidden”
componentof the definitions. For all the definitions we
gave, it wasnecessarynly thatobsenersthink it possible
that multiple agentscould have performedthe anorymous
action. However, an event that is possiblemay nonethe-
lessbe extremely unlikely. Considerour definition of to-
tal anorymity (Definition 3.2). It statesthatan actionper
formedby ¢ is totally anorymousif the obsener j thinksit
couldhave beenperformedby ary agentotherthanj. This
may seemlike a strongrequirementput if thereare, say
102 agents,and j candeterminethat performedaction
a with probability 0.99 and that eachof the otheragents
performedactiona with probability 0.0001, agenti might
not be very happy with the guaranteegrovided by total
anorymity. Of course the appropriatenotion of anorymity
will dependon the application:: might be contentto know
thatno agentcanprove that sheperformedthe anorymous
action. In that case,it might suffice for the actionto be
only minimally anorymous.However, in mary othercases,
anagentmightwantamorequantitatve, probabilisticguar
anteethatit will be consideredeasonablyikely thatother
agentould have performedthe action.

Adding probability to the runs and systemsframework
is straightforward. The approachwe usegoesbackto [11],
andwasalsousedin our work on secreg [9], sowe just
briefly review the relevantdetailshere. Givena systemR,

supposeve have a probability measurg: ontherunsof R.
The pair (R, 1) is a probabilistic system For simplicity,
we assumehat every subsetof R is measurable We are
interestedn theprobabilitythatanagentassigngo anevent
atthepoint (r, m). For example we maywantto know that
at the point (r, m), obsener i placesa probability of 0.6
on j's having performedsomeparticularaction. We want
to conditionthe probability x on IC; (r, m), theinformation
thats hasatthe point (r,m). The problemis that;(r, m)
is a setof points while 4 is a probability on runs  This
problemis dealtwith asfollows.

GivenasetU of points,let R(U) consistof therunsin
‘R goingthrougha pointin U. Thatis,

R(U) ={r € R:(r,m) € U for somem}.

Theideawill beto conditiony onR(K;(r, m)) ratherthan
onX;(r,m). To makesurethatconditioningis well defined,
we assumehat u(R(K;(r,m))) > 0 for eachagenti, run
r, andtimem. Thatis, u assigngositive probabilityto the
setof runsin R compatiblewith whathappensn runr up
totime m, asfarasagent; is concerned.

With this assumptionwe can definea measureu, n, ;
on the pointsin ;(r,m) asfollows. If S C R, define
K;(r,m)(S) to bethe setof pointsin K;(r,m) thatlie on
runsin S; thatis,

Ki(r,m)(S) = {(',m') € Ki(r,m) : ' € S}.

Let Fr i, themeasurablsubsetof IC;(r, m) (thatis, the
setsto which p, ., ; assignsa probability), consistof all
setsof theform K;(r,m)(S), whereS C R. Thendefine
trm,i(Ki(r,m)(S)) = p(S | R(Ki(r,m)). It is easyto
checkthat i, ,, ; is a probability measuregssentiallyde-
fined by conditioning.

Using pr,m,:» We cangive semanticdo syntacticstate-
mentsof probability. Following [3], we will be mostinter-
estedin formulasof the form Pr;(¢) < « (or similar for-
mulaswith >, <, or = insteadof <). Intuitively, aformula
suchasPr;(y) < ais trueata point (r,m) if, according
to pr.m,i, the probability that ¢ is trueis at leasta.. More
formally, (Z,r,m) = Pri(¢) < aif

pr,m,i({(r',m') < (Z,7",m)) = 0}) <o

Similarly, we can give semanticsto Pr;(¢) < « and
Pr(¢) = a, aswell as conditional formulas such as
Pr(¢|9) < a. Note that althoughtheseformulastalk
aboutprobability, they are either true or falseat a given
state.

It is straightforvard to define probabilistic notions of
anorymity in probabilisticsystems.For example,we can
think of Definition 3.1 assayingthat,asfar asthe obsener
j is concernedthe probability thati performedthe anory-
mous action a must be lessthan 1 (assumingthat every



nonemptyset haspositive probability). This canbe gen-
eralizedby specifyingsomea < 1 andrequiringthatthe
probability of §(i, a) belessthanc.

Definition 4.1: Action a, performedby agenti, is a-
anonymousvith respecto agent; if Z |= Pr;[0(i, a)] < a.
|

It might seemat first that Definition 4.1 shouldbe the
only definition of anorymity we need:aslong asj’s prob-
ability of i’s having performedthe actionis low enough,
i shouldhave nothingto worry about. However, with fur-
therthought, it is not hardto seethat this is not the case.
Considerascenariovherethereare1002agentsandwhere
a = 0.11. Supposehatthe probability, accordingto Alice,
thatBob performecdthe actionis .1, but thather probability
thatary of the other 1000 agentsperformedthe actionis
0.0009 (for eachagent). Alice’s probability that Bob per
formedthe actionis small, but her probability that anyone
elseperformedthe actionis morethanthreeordersof mag-
nitudesmaller It is obviousthatBob would be Alice’s first
guessf shehadto determinenho performedheaction.

Oneway to avoid theseproblemsis to strengtherDefi-
nition 4.1in theway thatDefinition 3.2 strengthen®efini-
tion 3.1. The next definition doesthis. It requiresthatno
agentin the anorymizing setbe a morelikely suspecthan
ary other

Definition 4.2 Action a, performedby agenti, is strongly
probabilisticallyanonymousip to 74 with respecto agent
5 if for eachi’ € 14,

T k= Pr,[6(i, a)] = Pr,[8(i', a)].

Dependingon the size of 14, this definition canbe ex-
tremelystrong. It doesnot statesimply thatfor all agents
in 14, the obsener mustthink it is reasonablylikely that
the agentcould have performedthe action;it alsosaysthat
the obsener’s probabilitiesmustbe the samefor eachsuch
agent.Of coursewe couldwealenthedefinitionsomeavhat
by not requiringthat all the probabilitiesbe equal,but by
insteadrequiringthatthey beapproximatelyequal(i.e., that
their differencebe small or that their ratio be closeto 1).
Ourmainpointis thatawide varietyof propertiecanbeex-
pressealearlyandsuccinctlyin ourframework, evenwhen
thepropertiesgnvolve strongprobabilisticrequirements.

4.2 Conditional Anonymity

While we have shovn that mary useful notions of
anorymity—including mary definitionsthat have already
beenproposed—carbe expressedn our framawork, we
claimthattherearesomeimportantintuitionsthathave not

yet beencaptured. Supposefor example, that someone
males a $5,000,000donationto Cornell University It is
clearly not the caseeveryoneis equallylikely, or evenal-
mostequallylikely, to have madethe donation.Of course,
we could take the anorymizing set I 4 to consistof those
peoplewho might bein a positionto make suchalargedo-
nation,andinsistthatthey all be consideredequallylikely.
Unfortunately eventhatis unreasonablea priori, someof
themmay alreadyhave known connectiongo Cornell,and
thusbe consideredar morelikely to have madethe dona-
tion. All thatananorymousdonor canreasonablyexpect
is thatnothinganobsenerlearnsfrom hisinteractionswith
theernvironment(e.g.,readingthe newspapersnotingwhen
the donationwas made,etc.) will give him moreinforma-
tion abouttheidentity of the donorthanhe alreadyhad.

For anotherexample,considera conferenceor research
journal that provides anorymous reviews to researchers
who submittheir paperdfor publication. It is unlikely that
thereview processgprovidesarything like a-anorymity for
a small o, or strongly probabilisticanorymity up to some
reasonableset. When this paper for example, was ac-
ceptedby CSFW the acceptancaoticeincludedthreere-
views thatwere, in our terminology anorymousup to the
programcommittee. Thatis, ary one of the reviews we
recevved could have beenwritten by ary of the members
of the programcommittee. However, by readingsomeof
the reviews, we were able to make fairly good guessess
to which committeemembershadprovidedwhich reviews,
basedon our knowledgeof the specialization®f the vari-
ousmembersandbasednthecontentof thereviewsthem-
seles. Moreover, we hada fairly goodideaof which com-
mittee memberswould provide reviews of our papereven
beforewe received the reviews. Thus,it seemsunreason-
ableto hopethatthe review processwould provide strong
probabilisticanorymity (up to the programcommittee),or
evensomewealervariantof probabilisticanorymity. Prob-
abilisticanorymity wouldrequirethereviewsto corvertour
prior beliefs,accordingto which someprogramcommittee
memberswere more likely than othersto be reviewers of
our paper to posteriorbeliefs accordingto which all pro-
gram committeememberswere equallylikely! This does
not seemat all reasonable However, the reviewers might
hopethatthattheprocesslid notgive usany moreinforma-
tion thanwe alreadyhad.

In [9], we tried to capturethe intuition that, when an
unclassifieduserinteractswith a securesystem,shedoes
not learnarything aboutary classifieduserthat shedidn’t
alreadyknow. We did this formally by requiringthat, for
ary threepoints(r,m), (r',m'), and(r",m"),

H(r,m,5) (Ict ("Jla m”)) = HK(r',m!,j5) (ICZ (T”7 m”))- (1)

Thatis, whatever the unclassifieduser;j seesherprobabil-
ity of ary particularclassifiedstatewill remainunchanged.



When defining anorymity, we are not concernedwith
protectingall information aboutsomeagenti, but rather
the fact thats performedsomeparticularactiona. Given
a probabilisticsystemZ = (R, n,u) andaformulap, let
er () consistof thesetof runsr suchthaty is trueatsome
pointin r, andlete,(¢) bethesetof pointswherey is true.
Thatis

er(p) = {r : Im((Z,r,m) |= ¢)},
ep(p) = {(r,m) : (Z,r,m) |= ¢}

The mostobvious analogueto (1) is the requirementhat,
for all points(r, m) and(r', m'),

H(r,m,j) (ep((s(ia a))) = K(r',m!,j) (ep((s(ia a)))

This definition saysthat j never learnsanything aboutthe
probabilitythat: performedu: shealwaysascribeshesame
probability to this event. In the contect of our anorymous
donationexample,this would saythat the probability (ac-
cordingto 5) of  donating$5,000,00Q0 Cornellis thesame
atall times.

The problemwith this definition is thatit doesnot al-
low j to learnthatsomeone&lonatedb5,000,00G0 Cornell.
Thatis, beforej learnedthat someonalonated$5,000,000
to Cornell, j may have thoughtit was unlikely that any-
onewould donatethat muchmoney to Cornell. We cannot
expectthat j's probability of ¢ donating$5,000,000vould
be the sameboth before and after learningthat someone
madea donation. We want to give a definition of condi-
tional anorymity thatallows obsenersto learnthatan ac-
tion hasbeenperformedput thatprotects—asnuchaspos-
sible,giventhe system—thdactthatsomeparticularagent
performecdthe action. If, onthe otherhand,theanorymous
actionhasnot beenperformed,thenthe obsenrer’s proba-
bilities do not matter

Supposéghati wantsto performactiona, andwantscon-
ditional anorymity with respecto j. Let §(j, a) represent
thefactthata hasbeenperformedoy someagentotherthan
J,i.e., 6(j,a) = Vyx;0(i',a). Our definition of condi-
tional anorymity saysthatan j’s prior probabilityof 4 (i, a)
givend(7, a) mustbethesameashis posteriomprobabilityof
4(i, a) atpointswherej knowsé(7, a), i.e., at pointswhere
j knows thatsomeoneotherthan j hasperformeda. Note
thata = u(e-(6(i,a)) | e-(6(7,a))) is the prior probabil-
ity thati hasperformeda, giventhatsomebodyotherthan
j has. Conditionalanorymity saysthatat ary point where
j knows thatsomeoneotherthanj performeda, j's prob-
ability of 4(i, a) mustbea. In otherwords,j shouldnt be
ableto learnanything moreaboutwho performeda (except
thatit wasperformedoy somebodyjhanheknow beforehe
beganinteractingwith the systemin thefirst place.

Definition 4.3 Action a, performedby agents, is condi-
tionally anonymouswith respectto j in the probabilistic

systentZ if

T K;6(7,a) =
P1;(0(i,a)) = uler(3(i,a)) | (37, a)).

Note thatif only oneagentever performsa, thena is triv-
ially conditionally anorymouswith respectto j, but may
not be minimally anorymous with respectto j. Thus,
conditionalanorymity doesnot necessarilymply minimal
anorymity.

In Definition4.3,weimplicitly assumedhatagent; was
allowedto learnthatsomeonetherthan; performedaction
a; anorymity is intendedto hide which agentperformeda,
giventhatsomebodydid. More generally we believe that
we needto consideranorymity with respecto whatanob-
sener is allowed to learn. We might want to specify for
example,that an obserer is allowedto know thata dona-
tion wasmade,andfor how much,or to learnthe contents
of a conferencepaperreview. Thefollowing definitionlets
usdo this formally.

Definition 4.4 Supposeéhat ¢ is a formulathatis true at
at mostone pointin eachrun of a probabilisticsystemZ.
Action a, performedby agent;, is conditionallyanonymous
with respecto j andy in the probabilisticsystemZ if

T | Kjp = Pr;(6(i, a)) = p(er(6(i, a)) | er ().
1

Definition 4.3 is clearly the specialcaseof Definition 4.4
wherep = §(7, a). Intuitively, both of thesedefinitionssay
that oncean obsener learnssomefact ¢ connectedo the
factd(i, a), we requirethatshedoesnt learnarything else
thatmight changeherprobabilitiesof 6(i, a).

4.3 Other Usesfor Probability

In the previous two subsectionsye have emphasized
how probability can be used to obtain definitions of
anorymity strongethanthosepresentedh Section3. How-
ever, probabilistic systemscan also be usedto definein-
terestingwaysof wealeningthosedefinitions. Real-world
anorymity systemsdo not offer absoluteguaranteef
anorymity such as those those specified by our defini-
tions. Rather they guaranteahat a users anorymity will
be protectedwith high probability. In a givenrun, ausers
anorymity mightbe protectedor corrupted.If the probabil-
ity of the eventthata users anorymity is corruptedis very
small,i.e., the setof runswhereheranorymity is not pro-
tecteds assignedvery smallprobabilityby themeasure:,
this might be enoughof a guarantedor the userto interact
with the system.



Recallthatwe saidthat: maintaingotal anorymity with
respectto j if thefacty = 4(i,a) = A, ; P5[0(7, a)]
is true at every point in the system. Total anorymity is
compromisedn arunr if at somepoint (r,m), - holds.
Thereforethe setof runswheretotal anorymity is compro-
misedis simply e..(—y), usingthe notationof the previous
section. If u(e-(—¢)) is very small, theni maintainstotal
anorymity with very high probability. Thisanalysiscanob-
viouslybeextendedo all theotherdefinitionsof anorymity
givenin previoussections.

Boundssuchastheseareusefulfor analyzingreal-world
systems.The Crowds system[15], for example,usesran-
domization when routing communicationtraffic, so that
anorymity is protectedwith high probability The prob-
abilistic guaranteegrovided by Crowds were analyzed
formally by Shmatilov [18], using a probabilistic model
checler, and he demonstratefiow the anorymity guaran-
teesprovided by the Crowds systemchangeasmoreusers
(who maybeeitherhonestor corrupt)areaddedto the sys-
tem. Shmatilov usesa temporalprobabilisticlogic to ex-
presgprobabilisticanorymity propertiessotheseproperties
canbe expressedn our systemframeawork. (It is straight-
forwardto give semantic®t temporaloperatorsn systems;
see[4].) In ary case,Shmatilov's analysisof areal-world
anorymity systemis a useful exampleof how the formal
methodghatwe adwocatecanbe usedto specifyandverify
propertief real-world systems.

5 RelatedWork
5.1 Knowledge-basedefinitions of Anonymity

As mentionedin the introduction, we are not the first
to use knowledgeto handledefinitionsof security infor-
mation hiding, or even anorymity. Anonymity hasbeen
formalized using epistemiclogic by Syversonand Stub-
blebine[19]. Like us, they useepistemiclogic to charac-
terizea numberof information-hidingrequirementshatin-
volve anorymity. However, the focusof their work is very
differentfrom ours. They describea logic for reasoning
aboutanorymity anda numberof axiomsfor thelogic. An
agents knowledgeis basedroughly speakingpon whatfol-
lows from his log of systemevents. The first five axioms
that Syversonand Stubblebinegive arethe standards5 ax-
iomsfor knowledge. Therearewell-known soundnesand
completenesgesultsrelatingthe S5axiomsystento Kripke
structuresemanticgor knowledge[4]. However, they give
mary more axioms,andthey do not attemptto give a se-
manticsfor which their axiomsare sound. Our focus, on
the otherhand,is completelysemantic.We have not tried
to axiomatizeanorymity. Rather we try to give anappro-
priatesemantidramenork in which to consideranorymity.

In some ways, Syversonand Stubblebines model is

more detailedthan the model usedhere. Their logic in-

cludesmary formulas that representvarious actionsand
facts,includingthe sendingandreceving of messagegje-
tails of encryptionand keys, and so on. They also make
moreassumptionsiboutthelocal stateof a givenagent,in-

cludingdetailsaboutthe sequencef actionsthatthe agent
hasperformedocally, alog of systemeventsthathave been
recorded,and a set of factsof which the agentis aware.
While theseextra detailsmay accuratelyreflectthe nature
of agentdn real-world systemsthey areorthogonato our
concernghere. In ary case,it would be easyto add such
expressvenesso our modelaswell, simply by including
thesedetailsin thelocal statesof thevariousagents.

It is straightforvardto relateour definitionsto thoseof
SywersonandStubblebine They considerfactsof the form
(i), wherei is a principal, i.e., an agent. They assume
thatthefacty(i) is asingleformulain whichasingleagent
nameoccurs. Clearly, §(i, a) is an exampleof sucha for-
mula. In fact, SyversonandStubblebineassumehatif (i)
andy(j) arebothtrue,theni = j. Forthed (i, a) formulas,
thismeanghatd(i, a) andé(i’, a) cannotbesimultaneously
true: atmostoneagentcanperformanactionin agivenrun,
exactly asin the setupof Proposition3.3.

Thereis one definition in [19] that is especiallyrele-
vant to our discussion;the other relevant definitions pre-
sentedtherearesimilar. A systemis saidto satisfy (> k)-
anonymityif the following formulais valid for someob-
senero:

@(i) = Pol(p(i)) A Po(p(i1)) A -+ A Polp(ik—1))-

This definitionsaysthatif (i) holds,theremustbeatleast
k agentsjncludings, thatthe obsener suspects(The exis-
tentialquantificationof theagentsy, . . ., i,—1 is implicit.)
The definition is essentiallyequivalentto our definition of
(k — 1)-anorymity. It certainlyimpliesthattherearek — 1
agentsotherthan: for which ¢(i') might be true. On the
otherhand,if P,(p(i")) is truefor k — 1 agentsotherthan
i, thenthe formulamusthold, because (i) = P,(¢(i)) is
valid.

5.2 CSPand Anonymity

A greatdeal of work on the foundationsof computer
securityhasusedprocessalgebrassuchas CCS and CSP
[14, 12] asthe basicsystemframenork [5, 16]. Processl-
gebrasoffer several advantagesthey are simple,they can
beusedfor specifyingsystemsaswell assystenproperties,
andmodel-checkrsareavailablethatcanbe usedto verify
propertief systemslescribedisingtheir formalisms.

SchneideandSidiropoulog17] useCSPbothto charac-
terizeonetype of anorymity andto describevariantsof the
dining cryptographesproblem[2]. They thenuseamodel-
checler to verify thattheir notion of anorymity holds for



thosevariantsof the problem. To describetheir approach,
we needto outline someof the basicnotationand seman-
tics of CSP To save spacewe give a simplified treatment
of CSPhere.(SeeHoare[12] for a completedescriptionof
CSP) Thebasicunit of CSPis theevent Systemsaremod-
eledin termsof the eventsthat they canperform. Events
may be built up several components. For example, “do-
nate.$5"might represent “donate” eventin the amountof
$5. Processesrethe systemspr component®f systems,
thataredescribedusing CSP As a procesaunfoldsor exe-
cutesvariouseventsoccur For our purposesye make the
simplifying assumptiorthata processs determinecby the
eventsequences is ableto engagen.

We canassociatavith every procesa setof traces Intu-
itively, eachtracein the setassociatedvith processP rep-
resentsone sequencef eventsthat might occurduring an
executionof P. Informally, CSP eventtracescorrespond
to finite prefixesof runs,exceptthatthey do not explicitly
describethe local statesof agentsanddo not explicitly de-
scribetime.

SchneideandSidiropoulogdefineanotionof anorymity
with respectto a set A of events. Typically, A consistsof
evensof theformi.a for afixedactiona, wherei is anagent
in somesetthatwe denotel 4. Intuively, anorymity with
respecto A meansthatif any eventin A occurs,it could
equallywell have beenary othereventin A. In particular
thismeanghatif anagentin 4 performsa, it couldequally
well have beenary otheragentin I4. Formally, givenaset
¥ of possibleeventsand A C X, let f4 beafunctionon
tracesthat, given a trace 7, returnsa trace f4(r) thatis
identicalto 7 exceptthat every eventin A is replacedby
afixedeventa ¢ . A processP is strongly anonymous
on A if f;'(fa(P)) = P, wherewe identify P with its
associatedetof traces.This meanghatall theeventsin A
areinterchangeablehy replacingary eventin A with ary
otherwe would still getavalid traceof P.

Schneiderand Sidiropoulosgive several very simple
examplesthat are useful for clarifying this definition of
anorymity. Oneis a systemwherethereare two agents
who canprovide donationgo a charity, but whereonly one
of themwill actuallydo so. Agent0, if shegivesa do-
nation, gives $5, and agent1 gives$10. This is followed
by a “thanks” from the charity The eventsof interestare
“0.gives”and"1.gives” (representingventswhere( and1
malke a donation),“$5” and“$10" (representinghe char
ity’ sreceiptof thedonation),'thanks”,and“STOP” (to sig-
nify that the processhasended). Thereare two possible
traces:

1. 0.gives— $5— “thanks” — STOP
2. 1.gves— $10— “thanks” — STOPR

The donorsrequireanorymity, and so we requirethat the
CSP processis strongly anorymouson the set {0.gives,

1.gives}. In fact, this conditionis not satisfiedby the pro-
cess,because€0.gives” and“1.gives” arenot interchange-
able. Thisis because0.gives” mustbe followed by “$5”,
while “1.gives” mustbe followed by “$10”. Intuitively, an
agentwho obsenesthe tracescandeterminethe donorby
looking attheamountof money donated.

We believe that Schneideiand Sidiropouloss definition
is bestunderstoodas trying to capturethe intuition that
an obsener who seesall the eventsgeneratedy P, ex-
ceptfor eventsin A, doesnot know which eventin A oc-
curred. We canmale this preciseby translatingSchneider
andSidiropouloss definitioninto our framework. Thefirst
stepis to associatavith eachprocessP acorrespondinget
of runsRp. We presentone reasonablevay of doing so
here,which sufiicesfor our purposes.In future work, we
hopeto explore the connectionbetweenCSPandthe runs
andsystemdrameavork in moredetail.

Recallthatarunis aninfinite sequencef globalstate of
theform (s, s1, ..., s,), whereeachs; is thelocal stateof
agenti, ands, is thestateof theervironment.Thereforeto
specifya setof runs,we needto describethe setof agents,
andthenexplainhow to derive thelocal statesof eachagent
for eachrun. Thereis anobviousproblemhere:CSPhasno
analogueof agentsandlocal states.To getaroundthis, we
couldsimply tagall eventswith anagent(asSchneideand
Sidiropoulosin factdo for the eventsin A). However, for
our currentpurposesamuchsimplerapproactwill do. The
only agentwe careaboutis a (possiblymythical) obsener
who is ableto obsene every event exceptthe onesin A.
Moreover, for eventsin A, the obsener knows that some-
thing happenedalthoughnot what). Theremay be other
agentsn thesystemputtheirlocal statesareirrelevant. We
formalizethis asfollows.

Fix a processP over somesetY of events,andlet A C
3. Following SchneideandSidiropoulosfor the purposes
of this discussionassumehat A consistsof eventsof the
formi.a, wherei € I4 anda is somespecificaction. We
say that a systemR is compatiblewith P if there exists
someagento suchthatthefollowing two conditionshold:

e for everyrunr € R andevery time m, thereexistsa
tracer € P suchthatr = r.(m) andfa(r) = ro(m);

o for everytracer € P, thereexistsarunr € R such
thatr.(|7|) = 7 andr,(|7|) = fa(r) (Where|r| is the
numberof eventsin 7).

Intuitively, R representsP if (1) for every tracer in P,
thereis a point (r,m) in R suchthat, at this point, exactly
the eventsin 7 have occurred(andarerecordedn the en-
vironments state)and o hasobsened f4(7), and (2) for
every point (r,m) in R, thereis atracer in P suchthat
preciselytheeventsin r. (m) have happenedh 7, ando has
obsened f4(7) at (r,m). We saythattheinterpretedsys-
temZ = (R, ) is compatiblewith P if R is compatible



with P andif (Z,r,m) = (i, a) wheneertheeventi.a is
in theeventsequence, (m).

We arenow ableto malke a formal connectionbetween
our definition of anorymity and that of Schneiderand
Sidiropoulos As in thesetupof Proposition3.3,we assume
thatananorymousactiona canbe performedonly oncein
agivenrun.

Theorem5.1 If Z = (R, w) iscompatiblewith P, thenP is
stronglyanonymou®nthealphabetA if andonly if for ev-
eryagenti € 14, theactiona performedby is anonymous
upto I4 with respectooin Z.

Proof: Supposethat P is strongly anorymouson the al-
phabetA andthati € I4. We needto showv that the
actiona performedby i is anorymousup to I4 with re-
spectto o. Given a point (r,m), we needto showv that
(Z,r,m) | 6(i,a) = Aycr, Pold(i',a)]. If thei.a does
notappeain r.(m) (i.e.,if ¢ hasnotperformedu), thenthis
holdstrivially. Otherwise(Z,r,m) |= 4(i,a), sofor each
i' € I4, weneedto show that(Z,r,m) | P,[6(i',a)],i.e.,
that(Z,r,m) E ~K,—d(i', a), Thus,we needto shov that
thereexists somepoint (', m') suchthatr,(m) = r,(m')
and(Z,r',m') E 6(i',a). BecauseR is compatiblewith
P, thereexistsatracer € P suchthatr = r.(m) andthe
eventi.a appearsn 7. Let 7' bethetracethatis identical
to 7, exceptthateachoccurrenceof i.a is replacedoy i’ .a.
SinceP is stronglyanorymousupto A, we musthave that
P = f,*(fa(P)); hences’ € P. SinceR is compatible
with P, thereexistsa point (', m') suchthatr,(m) = 7’
andrl (m) = fa(r"). By constructionf4(r) = fa(r'), so
ro(m) = rl(m'). Moreover, (Z,r',m') = §(i',a). Thus
(Ia T, m) |: PO[(S(ila a)]

Corversely supposehatfor everyagenti € 14, theac-
tion a performedoy i is anorymousupto I4 with respecto
oinZ. Weneedo show P is stronglyanorymous.lIt is clear
thatP C f,'(fa(P)), sowe mustshav only that P D
f1t(fa(P)). Sosupposehatr’ € f1*(fa(P)). It follows
thattheremustexist somer € P suchthat7’ is identical
to 7 exceptthat an occurrenceof i.a in 7 is replacedby
i'.a. BecauseR is compatiblewith P, thereexistsa run
r € R suchthatr,(m) = fa(r) andr.(m) = 7 (where
m = |7|). Clearly, (Z,r,m) = 46(i,a), soby anorymity,
(Z,7,m) | P,[6(i',a)]. Thus,thereexistsa point (r’, m')
suchthatr,(m) = r,(m') and(Z,r',m') = §(i’,a). Be-
causeheactiona canbeperformedatmostoncein atrace,
thetracer’ = r,(m') mustbethe sameasr exceptwith '
performinga insteadof ;. SinceR is compatiblewith P, 7'
isatracein P, asrequired

Up to now, we have assumedhatthe obsener o hasac-
cesdo all theinformationin the systemexceptwhich event
in A was performed. Schneiderand Sidiropoulosextend
their definitionof stronganorymity to dealwith agentghat

have somevhatlessinformation. They capture‘lessinfor-
mation” using abstraction opertors. Given a processP,
thereareseveralabstractioroperatorghatcangiveusanewn
processFor examplethe hiding operator, representetly \,
hidesall eventsin somesetC. Thatis, the processP\C
is the sameas P exceptthatall eventsin C' becomeinter-
nal eventsof the new processandarenotincludedin the
tracesassociateavith P\C. Anotherabstractioroperatoy
the renamingoperatoy hasalreadyappearedn the defini-
tion of stronganorymity: for ary setC' of events,we can
considerthe function fc that mapseventsin C' to a fixed
new event. The differencebetweenhiding and renaming
is that, if eventsin C' arehidden,the obsener is not even
awarethey took place.If eventsin C arerenamedthenthe
obsenreris awarethatsomeeventin C took place,but does
notknow which one.

Abstractionoperatorsuchastheseprovide a usefulway
to modela procesor agentwho hasa distortedor limited
view of the system.In the context of anorymity, they allow
anorymity to hold with respecto anobsenerwith alimited
view of thesystemn casesvhereit would not hold with re-
spectto anobsenerwho canseeeverything. In theanory-
mousdonationssxample hiding the events$5and$10,i.e.,
the amountof monegy donated,would make the new pro-
cessP\{$5,$10} stronglyanorymouson the setof dona-
tion events.Formally, givenanabstractioroperatord BS¢
on a setof eventsC, we have to checkthe requiremenbf
stronganorymity on the processA BS¢ (P) ratherthanon
theprocessP.

Abstractionis easily capturedin our framework. It
amountssimply to changingthe local stateof the obsenrer.
For example,anorymity of the processP\C' in our frame-
work correspondgo anorymity of the actiona for every
agentin I4 with respectto an obsener whoselocal state
atthepoint (r,m) is fa(r.(m))\C. We omit the obvious
analogueof Theoremb.1 here.

A majoradvantageof therunsandsystemdgramework is
that definitionsof high-level propertiessuchasanorymity
do notdependon thelocal statesof the agentsn question.
If we wantto modelthe factthatanobsener hasalimited
view of the system,we needonly modify her local state
to reflectthis fact. While somelimited views arenaturally
capturedoy CSPabstractioroperatorspthersmay not be.
Thedefinitionof anorymity shouldnot depencbn the exis-
tenceof anappropriateabstractioroperatorableto capture
thelimitations of a particularobsener.

As we have demonstratedour approachto anorymity
is compatiblewith the approachtakenin [17]. Our defini-
tionsarestatedin termsof actions,agentsandknowledge,
and arethusvery intuitive andflexible. The generalityof
runsand systemsallows usto have simple definitionsthat
apply to a wide variety of systemsand agents. The low-
level CSP definitions,on the other hand,are more opera-



tional thanours,andthis allows easiemodel-checkingnd
verification. Furthermoretherearemary advantageso us-
ing processalgebrasn general:systemscanoften be rep-
resentedmuch more succinctly and so on. This suggests
that both approachesave their advantages.BecauseCSP
systemscanbe representeéh the runsandsystemsrame-
work, however, it makesperfectsenseto defineanorymity
for CSP processesising the knowledge-basediefinitions
we have presentechere. If our definitionsturn out to be
equivalentto morelow-level CSPdefinitions,this is ideal,
becauseCSP model-checkingorogramscan then be used
for verification. A systemdesignersimply needsto take
carethattheruns-basedystenderivedfrom a CSPprocess
(or setof processeskepresentthelocal stateof the differ-
entagentsaappropriately

5.3 Anonymity and Function View Semantics

HughesandShmatilov [13] introducefunctionviewsand
function view opaquenesas a way of expressinga vari-
ety of information-hidingpropertiesin a succinctand uni-
form way. Their maininsightis that requirementsuchas
anorymity involverestrictionsonrelationshipdetweeren-
tities suchas agentsand actions. Becausetheserelation-
shipscanbe expressedy functionsfrom onesetof entities
to anotherhiding informationfrom anobseneramountgo
limiting anobsener’sview of thefunctionin question.For
example,anorymity propertiesareconcernedvith whether
or notanobseneris ableto connectactionswith theagents
who performedhem.By consideringhe functionfrom the
setof actionsto the setof agentswho performedthoseac-
tions,andspecifyingthedegreeto which thatfunctionmust
beopaqudo obseners,we canexpressanorymity usingthe
framework of [13].

To modelthe uncertaintyassociatedvith a given func-
tion, Hughesand Shmatilov define a notion of func-
tion knowled@ to explicitly represenainobsener’s partial
knowledgeof a function. Functionknowledgefocuseson
threeparticularaspect®of a function: its graph,image,and
kernel. (Recall that the kernel of a function f with do-
main X is the equivalencerelation ker on X definedby
(z,2") € keriff f(z) = f(z').) Functionknowledg of
typeX — Yisatriple N = (F,I,K),whereF C X xY,
I C Y, andK is anequvalencerelationon X. A triple
(F,I,K) is consistenwith fif f C F, I C imf, and
K C kerf. Intuitively, atriple (F, I, K) thatis consistent
with f representsvhatanagentmightknow aboutthefunc-
tion f. Completeknowledgeof a function f, for example,
would berepresentety thetriple (f, imf, kerf).

For anorymity, and for information hiding in general,
we areinterestechot in what an agentknows, but in what
anagentdoesnotknow. Thisis formalizedin [13] in terms
of opaquenessonditionsfor functionknowledge.If N =

(F, I, K) isconsistentvith f : X — Y, then,for example,
N is k-valueopaqueif |F(z)| > k for all z € X. Thatis,
N is k-valueopaqusif therearek possiblecandidategor
thevalueof f(z), for all z € X. Similarly, N is Z-value
opaquef Z C F(z) forallz € X. In otherwords,for each
z in thedomainof f, no elementof Z canberuledout as
acandidatdor f(x). Finally, N is absolutelyvalueopaque
if that V is Y -valueopaque.

Opaguenessonditionsare closely relatedto the non-
probabilistic definitions of anorymity given in Section3.
Consideffunctionsfrom X to Y, whereX is asetof actions
andY is asetof agentsandsupposéhatsomefunction f is
the functionthat, given someaction,namesthe agentwho
performedthe action. If we have k-value opaquenesfor
someview of f (correspondingo someobsener o), this
meansgssentiallythateachactiona in X is k-anorymous
with respecto o. Similarly, theview is I 4-valueopaquef
the actionis anorymousup to 74 for eachagenti € I4.
Thus, function view opaquenesgrovides a conciseway
of describinganorymity propertiesandinformation-hiding
propertiesn general.

To make theseconnectiongprecise we needto explain
how function views canbe embeddedvithin the runsand
systemdramavork. Hughesand Shmatilov alreadyshon
how we candefinefunction views usingKripke structures,
thestandarapproacHor giving semantic$o knowledge.A
minor modificationof their approachworksin systemsoo.
Assumewe areinterestedn who performsanactiona € X,
where X, intuitively, is a setof “anonymousactions”. Let
Y bethesetof agentaandlet f beapartialfunctionfrom X
toY'. Intuitively, f(a) = 7 if agent hasperformedactiona,
andf (a) is undefinedf noagenthas(yet) performedaction
a. Thevalueof thefunction f will dependonthepoint. Let
fr,m bethevalueof f atthepoint(r, m). Thus,f, ,(a) =1
if, atthe point (r,m) agenti hasperformeda.® We can
now easilytalk aboutfunction opaqueneswith respecto
anobsenero. Forexample,f is Z-valueopaqueatthepoint
(r,m) with respecto o if, for all z € Z, thereexistsapoint
(r',m') suchthatr,(m') = ro(m) and f/ iy (z) = 2.
In termsof knowledge, Z-value opaguenessaysthat for
ary valuez in therangeof f, o thinksit possiblethatary
valuez € Z couldbetheresultof f(z). Indeed,Hughes
and Shmatilov saythatfunctionview opaquenesglefined
in termsof Kripke structuresemanticsjs closely related
to epistemiclogic. The following propositionmakes this
precise;it would be easyto statesimilar propositionsfor
otherkinds of functionview opaqueness.

Proposition5.2 LetZ = (R, n) bean interpretedsystem

INote that for f(r,m) to bewell-defined,it mustbe the casethatonly
one agentcan ever performa single action. We alsoremarkthat, while
HughesandShmatilov did not considerpartial functions,they seemto be
necessamnereto dealwith the fact thatthe actiona may not have been
performedatall.



thatsatisfies(Z,r,m) = f(z) = y wheneer f, ) (z) =
y. In systentZ, f is Z-valueopaquefor observero at the
point (r,m) if andonly if

Z,r,m) = N\ N\ Pilf(@) ==].

Proof: This result follows immediatelyfrom the defini-
tions. 1l

Statedn termsof knowledge functionview opaqueness

alreadylooksalot like our definitionsof anorymity. Given
f (or, more precisely the set{ f(,.,)} of functions)map-
ping actionsto agentswe can statea theoremconnecting
anorymity to functionview opaquenesslherearetwo mi-

nor issuesto deal with, though. First, our definitions of

anorymity arestatedwith respecto asingleactiona, while

thefunction f dealswith a setof actions.We candealwith

this by takingthedomainof f to bethesingleton{a}. Sec-
ond,our definition of anorymity upto asetl4 requiresthe

obsenrerto suspecagentsn 4 onlyif ¢ actuallyperforms
theactiona. (Recallthisis alsotruefor SyversonandStub-
blebinesdefinitions.)I 4-valueopaquenesequiresheob-

senerto think mary agentsouldhave performedanaction
evenif nobodyhas. To dealwith this, we requireopaque-
nessonly whenthe actionhasbeenperformed.

Theorem5.3 Supposehat (Z,r,m) = 6(i,a) exactlyif
J(r,m)(@) = 4. Thenactiona is anonymousip to 14 with
respecto o for eadh agenti € 14 if andonlyif atall points
(r,m) sudthat f(, ,)(a) € 14, f is Ia-valueopaquewith
respecto o.

Proof: Supposehat f is I4-valueopaqueandleti € I4
be given. If (Z,r,m) = 6(i,a), then f, ) (a) = i. We
needto show thatfor ary i’ € I4, (Z,r,m) |= P,[0(i',a)].
Becausef is I4-valueopaqueat (r, m), thereexistsa point
(r',m') suchthatr)(m') = r,(m) and fs mry(a) = i’
Since(Z,r',m") E §(i',a), (Z,r,m) = Po[d(i', a)].

Corversely supposethat for eachagenti € 14, ais
anorymousup to I4 with respecto o. Let (r,m) begiven
suchthat f(,. ,)(a) € I, andsupposehati = f, )(a).
It follows that (Z,r,m) | 6(i,a). Forary i’ € Ig4,
(Z,7,m) | P,[6(¢',a)], by anorymity. Thusthereexistsa
point (r', m') suchthatr! (m') = r,(m) and(Z,r',m') |
d(i',a). It follows that f(, .y (a) = 4', andthat f is I4-
valueopaquel

As with Proposition5.2, it would be easyto state
analogoustheoremsconnectingour other definitions of
anorymity, including minimal anorymity, total anorymity,
and k-anorymity, to otherforms of functionview opaque-
ness.We omit the detailshere.

Hughesand Shmatilov argue that epistemiclogic is a
useful languagefor expressinganorymity specifications,

while CSPis a usefullanguagédor describingandspecify-
ing systems.We certainlyagreewith both of theseclaims.
They proposedunctionviews asa usefulinterfaceto medi-
ate betweenthe two. We have tried to argue herethat no
mediationis necessarysincethe multiagentsystemdrame-
work canalsobe usedfor describingsystems(Indeed the
tracesof CSPcan essentiallybe viewed asruns.) Never-

thelesswe do believe that function views canbe the basis
of a usefullanguagefor reasoningaboutsomeaspectof

information hiding. We canwell imagineaddingabbrevi-

ationsto the languagethatlet us talk directly aboutfunc-

tion views. (We remarkthatwe view theseabbreviationsas
syntacticsugar sincethesearenotionsthat canalreadybe
expressedlirectly in termsof the knowledgeoperatorsve

have introduced.)

On the other hand, we believe that function views are
not expressve enoughto captureall aspectof information
hiding. Oneobviousproblemis addingprobability. While it
is easyto addprobabilityto systemsaswe have shovn, and
to captureinterestingprobabilisticnotionsof anorymity, it
is far from clearhow to do this if we take function views
triplesasprimitive.

To sumup, we would arguethatto reasoraboutknowl-
edgeandprobability, we needto have possiblenvorldsasthe
underlyingsemantidrameawork. Usingthe multiagentsys-
temsapproaclyivesuspossiblevorldsin away thatmakes
it particularly easyto relatethemto systems.Within this
semanticframework, function views may provide a useful
syntacticconstructwith which to reasoraboutinformation
hiding.

6 Discussion

We have describeda framework for reasoningaboutin-
formation hiding in multiagentsystems,and have given
generaldefinitionsof anorymity for agentsactingin such
systems. We have also comparedand contrastecour def-
initions to other similar definitions of anorymity. Our
knowledge-basegystemframework providesa numberof
adwantages:

e We areableto stateinformation-hidingpropertiesuc-
cinctly andintuitively, andin termsof the knowledge
of theobsenersor attaclerswho interactwith the sys-
tem.

e Our systemhasa well-definedsemanticghat lets us
reasonaboutknowledgein systemsof interest,such
as systemsspecifiedusing processalgebrasor strand
spaces.

e \We areableto give straightforvard probabilisticdefi-
nitionsof anorymity, andof otherrelatedinformation-
hiding properties.



One ohviously importantissuethat we have not men-
tioned at all is model checking, which could be usedto
check whethera given systemspecifiesthe knowledge-
basedpropertieswe have introduced. Fortunately recent
work hasexploredthe problemof model checkingin the
multiagentsystemsramenvork. Vander Meyden[20] dis-
cusseslgorithmsandcompleity resultsfor modelcheck-
ing awide rangeof epistemicformulasin therunsandsys-
temsframework, andvanderMeydenandSu[21] usethese
resultsto verify the dining cryptographerprotocol[2], us-
ing formulas much like thosedescribedin Example 3.6.
Eventhoughmodelcheckingof formulasinvolving knowl-
edgeseemsto be intractablefor large problems,thesere-
sults are a promisingfirst steptowardsbeing able to use
knowledge for both the specificationand verification of
anorymity properties.

We describedone way to generatea setof runsfrom a
CSPprocessP, basicallyby recordingall the eventsin the
stateof the ervironmentand describingsomeobsener o
who is ableto obsene a subsetof the events. This trans-
lation wasusefulfor comparingour abstractdefinitionsof
anorymity to more operationalCSP-basedlefinitions. In
futurework we hopeto further explorethe connectionde-
tweenthe runs and systemsframewvork andtools suchas
CCS,CSRandthespicalculug[1]. A greatdealof work in
computersecurityhasformalizedinformationhiding prop-
ertiesusingthesetools. Suchwork oftenreasonsboutthe
knowledgeof variousagentsin aninformal way, andthen
tries to captureknowledge-basedecuritypropertiesusing
oneof theseformalisms. By describingcanonicaltransla-
tionsfrom theseformalismsto therunsandsystemdrame-
work, we hopeto beableto demonstratéormally how such
definitions of security do (or do not) capturenotions of
knowledge.
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